5,857 research outputs found

    Approaching zero : temporal effects of a restrictive antibiotic policy on hospital-acquired Clostridium difficile, extended-spectrum β-lactamase-producing coliforms and meticillin-resistant Staphylococcus aureus

    Get PDF
    A restrictive antibiotic policy banning routine use of ceftriaxone and ciprofloxacin was implemented in a 450-bed district general hospital following an educational campaign. Monthly consumption of nine antibiotics was monitored in defined daily doses (DDDs) per 1000 patient-occupied bed-days (1000 pt-bds) 9 months before until 16 months after policy introduction. Hospital-acquired Clostridium difficile, meticillin-resistant Staphylococcus aureus (MRSA) and extended-spectrum -lactamase (ESBL)- producing coliform cases per month/1000 pt-bds were identified and reviewed throughout the hospital. Between the first and final 6 months of the study, average monthly consumption of ceftriaxone reduced by 95% (from 46.213 to 2.129 DDDs/1000 pt-bds) and that for ciprofloxacin by 72.5% (109.804 to 30.205 DDDs/1000 pt-bds). Over the same periods, hospital-acquisition rates for C. difficile reduced by 77% (2.398 to 0.549 cases/1000 pt-bds), for MRSA by 25% (1.187 to 0.894 cases/1000 pt-bds) and for ESBL-producing coliforms by 17% (1.480 to 1.224 cases/1000 pt-bds). Time-lag modelling confirmed significant associations between ceftriaxone and C. difficile cases at 1 month (correlation 0.83; P < 0.005), and between ciprofloxacin and ESBL-producing coliform cases at 2 months (correlation 0.649; P = 0.002). An audit performed 3 years after the policy showed sustained reduction in C. difficile rates (0.259 cases/1000 pt-bds), with additional decreases for MRSA (0.409 cases/1000 pt-bds) and ESBL-producing coliforms (0.809 cases/1000 pt-bds). In conclusion, banning two antibiotics resulted in an immediate and profound reduction in hospital-acquired C. difficile, with possible longer-term effects on MRSA and ESBL-producing coliform rates. Antibiotic stewardship is fundamental in the control of major hospital pathogens

    Ultrasound enhancement of microfiltration performance for natural organic matter removal

    Get PDF
    Sonication of water at 1500 W power prior to microfiltration showed that short sonication times (60 s) gave a reduced flux decline. It is suggested that a less potent, smaller molecular form of the natural organic matter (NOM) was produced by sonication. Longer sonication times diminished this beneficial effect. This may be due to the formation of aggregates or compounds that are more readily adsorbed on the membrane. Where the sonication was preceded by an alum treatment, the flux loss showed a regular decrease with longer sonication times. It is suggested that the effects of sonication on the alum flocs and on the flocs; NOM interactions may play a critical role in regulating the flux. Where sand was present on sonication at 800 and 1400 W, the cavitational energy was focussed on adsorbed organic material, resulting in more efficient destruction and the formation of compounds that counteracted the flux enhancement

    System impacts of solar dynamic and growth power systems on space station

    Get PDF
    Concepts for the 1990's space station envision an initial operational capability with electrical power output requirements of approximately 75 kW and growth power requirements in the range of 300 kW over a period of a few years. Photovoltaic and solar dynamic power generation techniques are contenders for supplying this power to the space station. A study was performed to identify growth power subsystem impacts on other space station subsystems. Subsystem interactions that might suggest early design changes for the space station were emphasized. Quantitative analyses of the effects of power subsystem mass and projected area on space station controllability and reboost requirements were conducted for a range of growth station configurations. Impacts on space station structural dynamics as a function of power subsystem growth were also considered

    Complementarity and diversity in a soluble model ecosystem

    Full text link
    Complementarity among species with different traits is one of the basic processes affecting biodiversity, defined as the number of species in the ecosystem. We present here a soluble model ecosystem in which the species are characterized by binary traits and their pairwise interactions follow a complementarity principle. Manipulation of the species composition, and so the study of its effects on the species diversity is achieved through the introduction of a bias parameter favoring one of the traits. Using statistical mechanics tools we find explicit expressions for the allowed values of the equilibrium species concentrations in terms of the control parameters of the model

    A Universal Machine for Biform Theory Graphs

    Full text link
    Broadly speaking, there are two kinds of semantics-aware assistant systems for mathematics: proof assistants express the semantic in logic and emphasize deduction, and computer algebra systems express the semantics in programming languages and emphasize computation. Combining the complementary strengths of both approaches while mending their complementary weaknesses has been an important goal of the mechanized mathematics community for some time. We pick up on the idea of biform theories and interpret it in the MMTt/OMDoc framework which introduced the foundations-as-theories approach, and can thus represent both logics and programming languages as theories. This yields a formal, modular framework of biform theory graphs which mixes specifications and implementations sharing the module system and typing information. We present automated knowledge management work flows that interface to existing specification/programming tools and enable an OpenMath Machine, that operationalizes biform theories, evaluating expressions by exhaustively applying the implementations of the respective operators. We evaluate the new biform framework by adding implementations to the OpenMath standard content dictionaries.Comment: Conferences on Intelligent Computer Mathematics, CICM 2013 The final publication is available at http://link.springer.com

    Chesapeake Bay Wave Climate : Wolf Trap Wave Station, Report and Summary of Wave Observations November 6, 1989 through August 2, 1990

    Get PDF
    The Virginia Institute of Marine Science, in cooperation with the Virginia Department of Conservation and Recreation, Division of Soil and Water Conservation, has identified as one of its major goals the systematic study of hydrodynamic processes that affect recreational, shoreline and benthic resources in the coastal zone of the Commonwealth. In pursuit of that goal, a long-term study of the wave climate in the Virginia portion of Chesapeake Bay was initiated in 1988 with support from the National Oceanographic and Atmospheric Administration through the Coastal Zone Management Program administered by the Virginia Council on the Environment (Grant No. NA89AA-D-CZ134)

    Controlling Fast Chaos in Delay Dynamical Systems

    Full text link
    We introduce a novel approach for controlling fast chaos in time-delay dynamical systems and use it to control a chaotic photonic device with a characteristic time scale of ~12 ns. Our approach is a prescription for how to implement existing chaos control algorithms in a way that exploits the system's inherent time-delay and allows control even in the presence of substantial control-loop latency (the finite time it takes signals to propagate through the components in the controller). This research paves the way for applications exploiting fast control of chaos, such as chaos-based communication schemes and stabilizing the behavior of ultrafast lasers.Comment: 4 pages, 4 figures, to be published in Physical Review Letter

    Chesapeake Bay wave climate : Thimble Shoal light wave station, report and summary of wave observations, October 8, 1990 through August 22, 1991 and Chesapeake light tower - VIMS Star gage test measurements and evaluation, July, August, October 1991

    Get PDF
    This report also presents a description of a directional wave gaging system, known as a Star gage, that is designed for long-term, low-maintenance operation both within and immediately outside the Chesapeake Bay entrance area. This development was prompted by our dependence to date on the single-point, PUV-type directional wave gage described below. While ideally suited for short-term investigative studies at different sites, the PUV directional wave gage requires field service visits at monthly intervals to maintain adequate performance and uninterrupted operation. A prototype Star gage system was constructed and field tested to evaluate its potential use as a long-term and eventual real-time wave gage for the Virginia coastal environment. A test deployment of the VIMS Star gage, a 4-element pressure sensor array utilizing a star configuration (Goda, 1985) was conducted at the Chesapeake Light Tower (CLT, Fig. 1) located approximately 14 nautical miles east of the bay entrance. Results of these tests are reported in Section VII

    A Multi Agent Model for the Limit Order Book Dynamics

    Full text link
    In the present work we introduce a novel multi-agent model with the aim to reproduce the dynamics of a double auction market at microscopic time scale through a faithful simulation of the matching mechanics in the limit order book. The agents follow a noise decision making process where their actions are related to a stochastic variable, "the market sentiment", which we define as a mixture of public and private information. The model, despite making just few basic assumptions over the trading strategies of the agents, is able to reproduce several empirical features of the high-frequency dynamics of the market microstructure not only related to the price movements but also to the deposition of the orders in the book.Comment: 20 pages, 11 figures, in press European Physical Journal B (EPJB

    Long-range memory model of trading activity and volatility

    Get PDF
    Earlier we proposed the stochastic point process model, which reproduces a variety of self-affine time series exhibiting power spectral density S(f) scaling as power of the frequency f and derived a stochastic differential equation with the same long range memory properties. Here we present a stochastic differential equation as a dynamical model of the observed memory in the financial time series. The continuous stochastic process reproduces the statistical properties of the trading activity and serves as a background model for the modeling waiting time, return and volatility. Empirically observed statistical properties: exponents of the power-law probability distributions and power spectral density of the long-range memory financial variables are reproduced with the same values of few model parameters.Comment: 12 pages, 5 figure
    corecore