6,781 research outputs found
Atmospheric Trace Molecule Spectroscopy (ATMOS)
The Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment is a space-borne investigation designed to obtain fundamental information related to the chemistry and physics of the earth's upper atmosphere (20 to 120 km altitude). The instrument, a high resolution (0.01/cm) interferometric spectrometer, measures the atmospheric absorption of solar radiation over the wavelength range from 2 to 16 micrometers, a spectral band which encompasses active transitions of all of the molecular species of current importance in upper atmospheric studies. There are two major aspects to the experiment: (1) the determination of the detailed compositional structure of the stratosphere and mesosphere, and its global, seasonal, and long-term variability; and (2) the study of the partitioning of absorbed solar energy at levels in the atmosphere characterized by dissociation of many of the constituents and by the breakdown of thermodynamic equilibrium. Characteristics of ATMOS are given. This experiment will be part of the atmospheric science research payload flown on the Atmospheric Laboratory for Applications and Science (ATLAS 1) NASA mission planned for late 1990
Theory of zone radiometry
A spectroscopic instrumentation system was developed which was used to measure temperature and concentration distributions in axisymmetric and two dimensional combusting flows. This measurement technique is known as zone radiometry
Effects of systematic errors on the mixing ratios of trace gases obtained from occulation spectra
The influence of systematic errors in the parameters of the models describing the geometry and the atmosphere on the profiles of trace gases retrieved from simulated solar occultation spectra, collected at satellite altitudes, is investigated. Because of smearing effects and other uncertainties, it may be preferable to calibrate the spectra internally by measuring absorption lines of an atmospheric gas such as CO2 whose vertical distribution is assumed rather than to relay on externally supplied information
New observations of stratospheric N2O5
The unequivocal detection of N2O5 in the stratosphere was reported by Toon et al. based on measurements of the absorption by the N2O5 bands at 1246 and 1720/cm in solar occulation spectra recorded at sunrise near 47 S latitude by the Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment during the Spacelab 3 (SL3) shuttle mission. Additional measurements and analysis of stratospheric N2O5 derived from the ATMOS/SL3 spectra are reported. The primary results are the detection and measurement of N2O5 absorption at sunset in the lower stratosphere, the inversion of a precise (approximately 10 percent) N2O5 sunrise vertical distribution between 25.5 and 37.5 km altitude, and the identification and measurement of absorption by the N2O5 743/cm band at sunrise. Assuming 4.32 x 10(sup -17) and 4.36 x 10(sup -17)/cm/molecule/sq cm respectively for the integrated intensities of the 1246 and 743/cm bands at stratospheric temperatures, retrieved volume mixing ratios in parts per billion by volume (ppbv) at sunrise (47 S latitude) are 1.32 + or - 0.34 at 37.5 km, 1.53 + or - 0.35 at 35.5 km, 1.63 + or - 0.36 at 33.5 km, 1.60 + or - 0.34 at 31.5 km, 1.43 + or - 0.30 at 29.5 km, 1.15 + or - 0.24 at 27.5 km, and 0.73 + or - 0.15 at 25.5 km. Retrieved VMRs in ppbv at sunset (30 N latitude) are 0.13 + or - 0.05 at 29.5 km, 0.14 + or - 0.05 at 27.5 km, and 0.10 + or - 0.04 at 25.5 km. Quoted error limits (1 sigma) include the error in the assumed band intensities (approximately 20 percent). Within the error limits of the measurements, the inferred mixing ratios at sunrise agree with diurnal photochemical model predictions obtained by two groups using current photochemical data. The measured mixing ratios at sunset are lower than the model predictions with differences of about a factor of 2 at 25 km altitude
On the size and composition of particles in polar stratospheric clouds
Attenuation measurements of the solar radiation between 1.5 and 15 micron wavelengths were performed with the airborne (DC-8) JPL MARK 4 interferometer during the 1987 Antarctic Expedition. The opacities not only provide information about the abundance of stratospheric gases but also about the optical depths of polar stratospheric clouds (PSCs) at wavelengths of negligible gas absorption (windows). The optical depth of PSCs can be determined for each window once the background attenuation, due to air-molecules and aerosol has been filtered out with a simple extinction law. The ratio of optical thicknesses at different wavelengths reveals information about particle size and particle composition. Among the almost 700 measured spectra only a few PSC cases exist. PSC events are identified by sudden reductions in the spectrally integrated intensity value and are also verified with backscattering data from an upward directed lidar instrument, that was mounted on the DC-8. For the selected case on September 21st at 14.40 GMT, lidar data indicate an optically thin cloud at 18k and later an additional optically thick cloud at 15 km altitude. All results still suffer from: (1) often arbitrary definitions of a clear case, that often already may have contained PSC particles and (2) noise problems that restrict the calculations of optical depths to values larger than 0.001. Once these problems are handled, this instrument may become a valuable tool towards a better understanding of the role PSCs play in the Antarctic stratosphere
Autocorrelation of Random Matrix Polynomials
We calculate the autocorrelation functions (or shifted moments) of the
characteristic polynomials of matrices drawn uniformly with respect to Haar
measure from the groups U(N), O(2N) and USp(2N). In each case the result can be
expressed in three equivalent forms: as a determinant sum (and hence in terms
of symmetric polynomials), as a combinatorial sum, and as a multiple contour
integral. These formulae are analogous to those previously obtained for the
Gaussian ensembles of Random Matrix Theory, but in this case are identities for
any size of matrix, rather than large-matrix asymptotic approximations. They
also mirror exactly autocorrelation formulae conjectured to hold for
L-functions in a companion paper. This then provides further evidence in
support of the connection between Random Matrix Theory and the theory of
L-functions
An FTIR spectrometer for remote measurements of atmospheric composition
The JPL IV interferometer, and infrared Michelson interferometer, was built specifically for recording high resolution solar absorption spectra from remote ground-based sites, aircraft and from stratospheric balloons. The instrument is double-passed, with one fixed and one moving corner reflector, allowing up to 200-cm of optical path difference (corresponding to an unapodised spectral resolution of 0.003/cm). The carriage which holds the moving reflector is driven by a flexible nut riding on a lead screw. This arrangement, together with the double-passed optical scheme, makes the instrument resistant to the effects of mechanical distortion and shock. The spectral range of the instrument is covered by two liquid nitrogen-cooled detectors: an InSb photodiode is used for the shorter wavelengths (1.85 to 5.5 microns, 1,800 to 5,500/cm) and a HgCdTe photoconductor for the range (5.5 to 15 microns, 650 to 1,800/cm). For a single spectrum of 0.01/cm resolution, which requires a scan time of 105 seconds, the signal/noise ratio is typically 800:1 over the entire wavelength range
Roots of the derivative of the Riemann zeta function and of characteristic polynomials
We investigate the horizontal distribution of zeros of the derivative of the
Riemann zeta function and compare this to the radial distribution of zeros of
the derivative of the characteristic polynomial of a random unitary matrix.
Both cases show a surprising bimodal distribution which has yet to be
explained. We show by example that the bimodality is a general phenomenon. For
the unitary matrix case we prove a conjecture of Mezzadri concerning the
leading order behavior, and we show that the same follows from the random
matrix conjectures for the zeros of the zeta function.Comment: 24 pages, 6 figure
- …