22 research outputs found
Robotic surface exploration with vision and tactile sensing for cracks detection and characterisation
This paper presents a novel algorithm for crack localisation and detection
based on visual and tactile analysis via fibre-optics. A finger-shaped sensor
based on fibre-optics is employed for the data acquisition to collect data for
the analysis and the experiments. To detect the possible locations of cracks a
camera is used to scan an environment while running an object detection
algorithm. Once the crack is detected, a fully-connected graph is created from
a skeletonised version of the crack. A minimum spanning tree is then employed
for calculating the shortest path to explore the crack which is then used to
develop the motion planner for the robotic manipulator. The motion planner
divides the crack into multiple nodes which are then explored individually.
Then, the manipulator starts the exploration and performs the tactile data
classification to confirm if there is indeed a crack in that location or just a
false positive from the vision algorithm. If a crack is detected, also the
length, width, orientation and number of branches are calculated. This is
repeated until all the nodes of the crack are explored.
In order to validate the complete algorithm, various experiments are
performed: comparison of exploration of cracks through full scan and motion
planning algorithm, implementation of frequency-based features for crack
classification and geometry analysis using a combination of vision and tactile
data. From the results of the experiments, it is shown that the proposed
algorithm is able to detect cracks and improve the results obtained from vision
to correctly classify cracks and their geometry with minimal cost thanks to the
motion planning algorithm.Comment: 12 page
Modélisation d'estimation de la verticalité pendant locomotion
In this thesis, a nonlinear model of the vestibular system is proposed, with special reference to humans and other locomoting animals. The vestibular system is essential for stable locomotion since it provides idiothetic measurements of spatial orientation that are needed for postural control. The model was constructed from general considerations regarding the Newton-Euler dynamics governing the three-dimensional movements of bodies constrained to oscillate in non-inertial frames, such as the otoliths, which were modeled as spherical damped pendula. Two configurations were considered. The medial model considered only one inner ear located in the center of a head. The lateral model considered two inner ears located laterally with respect to the center of rotation of the head. The differences between these two models were analyzed and the importance of having two vestibular organs discussed. To this end, a nonlinear algebraic observability test was used to verify whether the reconstruction of the head orientation with respect to the gravitational vertical was possible from otoliths measurements only. It could be shown that in order for the head vertical orientation to be observable, the head had to be stabilized during locomotion. Moreover, it was shown that the gravito-inertial ambiguity inherent to inertial idiothetic sensing could be resolved if the head was horizontally stabilized. These results were applied to solve the head vertical orientation estimation problem in the linearized case (Luenberger observer, Kalman filter) as well as in the nonlinear case (Extended Kalman filter, Newton method based observation). These observers were designed and tested in simulations. The simulations indicated that the estimation errors were smaller and the observers converged faster when head was stabilized during locomotion, leading to a nonlinear, combined observation-control system that could be stabilized with respect to the gravitational vertical based on no other information than the prior knowledge of the Newton-Euler dynamics. The results were further tested with a specifically designed experimental setup that comprised an actuated gimbal mechanism to represent the head-neck articulation and a liquid-based inclinometer that represented the otoliths organs. The findings derived from this research would be helpful for analyzing spatial perception in humans and animals, and for improving the perceptual capabilities of robotic systems, such as humanoid robots, rough terrain vehicles, or free-moving drones.Dans cette thèse nous proposons une modèl nonlinéaire du système vestibulaire. Le système vestibulaire est essentiel pour locomotion stable à fin qu'il fournit les mesures idiothétiques d'orientation spatial necessaire pour contrôle de la posture. Development du model est baseé sur les principes generals de dynamique Newton-Euler. Les otolithes du système vestibulaire sont modelisé comme pendule sphérique amortie, qui oscille en référentiel non galiléen. Deux types du modèl ont été proposées. Le modèl medial consideers une oreille interne qui se trouve dans le centre de la tête. Le modèl lateral deux oreille interne qui sont situés des deux côté lateral du centre de la tête. Les differences entre les modèls ont été analysé et l'importance d'avoir deux ensembles d'organes vestibulaires ont été discuté. Test algebraic d'observabilité nonlinéaire des models a demonstré que pour avoir l'orientation spatial de la tête observable la tête doit être stabilisée pendant locomotion. Nous avons montré que le problèm d'ambiguïté gravito-inertiel peut être résolu si la tête est stabilisé horizontalement. Ces résultats ont été appliqués pour estimer la verticalité gravitationnelle lors de la locomotion dans les cas linéarisées et non linéaire. Ces résultats ont été appliqués pour estimer la verticalité gravitationnelle pendant locomotion dans les cas linéarisées et non linéaire. Les resultats des simulations ont montré que les erreurs d'estimation ont été significativement plus faible dans le cas de la tête stabilisée. Les estimateurs étaient plus rapides et plus robustes lorsque la tête a été stabilisée. Ensuite, les résultats ont été testés avec le système expérimental, qui a été spécialement conçu pour représenter le système tête-cou et les organes vestibulaires. L'inclinomètre utilisant un liquide a été exploité pour représenter les functions d'otolithes. Les résultats présentés dans cette thèse sont utiles pour l'analyse de la perception spatiale chez les humains et les animaux, et pour améliorer les capacités sensorielles des systèmes robotiques, tels que les robots humanoïdes, véhicules tout terrain, ou des drones
Stability Analysis of Mobile Robot Teleoperation with Variable Force Feedback Gain
Abstract. We analyze the stability of previously proposed mobile robot teleoperation system [7]. Unlike to other approaches human-operator dynamics is included for the stability analysis. Mobile robot teleoperation systems have two major differences when they are compared with conventional bilateral teleoperators: first, rate mode control is used; second, absence of physical interaction of the robot with the environment (except with the ground). Environmental force feedback based on measured distances to the obstacles is considered in the analyzed teleoperation system. Simulations showed advantages and disadvantages of teleoperation with environmental force feedback. It was shown that the quality of position control of mobile robot during teleoperation with previously proposed variable force feedback gain was better than with conventional approach
Modelling human postural stability and muscle activation augmented by a supernumerary robotic tail
Wearable robots have promising characteristics for human augmentation; however, the the design and specification stage needs to consider biomechanical impact. In this work, musculoskeletal software is used to assess the biomechanical implications of having a two-degrees-of-freedom supernumerary robotic tail mounted posterior to the human trunk. Forward and backward tilting motions were assessed to determine the optimal design specification. Specifically; the key criteria utilised included the centre of pressure, the dynamic wrench exerted by the tail onto the human body and a global muscle activation index. Overall, it was found that use of a supernumerary tail reduced lower limb muscle activation in quiet stance. Furthermore, the optimal design specification required a trade-off between the geometric and inertial characteristics, and the amount of muscle assistance provided by the tail to facilitate safe physical Human-Robot interaction. &#xD.</p