4 research outputs found

    Mitomycin-C in corneal surface excimer laser ablation techniques: a report by the American Academy of Ophthalmology.

    No full text
    To review the published literature assessing the efficacy and safety of mitomycin-C (MMC) as an adjunctive treatment in corneal surface excimer laser ablation procedures. Literature searches of the PubMed and Cochrane Library databases were last conducted on August 19, 2014, without language or date limitations. The searches retrieved a total of 239 references. Of these, members of the Ophthalmic Technology Assessment Committee Refractive Management/Intervention Panel selected 26 articles that were considered to be of high or medium clinical relevance, and the panel methodologist rated each article according to the strength of evidence. Ten studies were rated as level I evidence, 5 studies were rated as level II evidence, and the remaining 11 studies were rated as level III evidence. The majority of the articles surveyed in this report support the role of MMC as an adjunctive treatment in surface ablation procedures. When MMC is applied in the appropriate concentration and confined to the central cornea, the incidence of post-surface ablation haze is decreased. Although a minority of studies that evaluated endothelial cell density (ECD) reported an MMC-related decrease in ECD, no clinical adverse outcomes were reported. Over the past 15 years, the use of MMC during surgery in surface ablation has become widespread. There is good evidence of the effectiveness of MMC when used intraoperatively as prophylaxis against haze in higher myopic ablations. Although there are reports of decreased endothelial counts after the administration of MMC during surgery, the clinical significance of this finding remains uncertain, because no adverse outcomes were reported with as much as 5 years of follow-up. Optimal dosage, effectiveness as prophylaxis in lower myopic and hyperopic ablations, and long-term safety, particularly in eyes with reduced corneal endothelial cell counts from prior intraocular surgery, have yet to be established

    Femtosecond lasers for LASIK flap creation: a report by the American Academy of Ophthalmology.

    No full text
    To review the published literature to assess the safety, efficacy, and predictability of femtosecond lasers for the creation of corneal flaps for LASIK; to assess the reported outcomes of LASIK when femtosecond lasers are used to create corneal flaps; and to compare the differences in outcomes between femtosecond lasers and mechanical microkeratomes. Literature searches of the PubMed and Cochrane Library databases were last conducted on October 12, 2011, without language or date limitations. The searches retrieved a total of 636 references. Of these, panel members selected 58 articles that they considered to be of high or medium clinical relevance, and the panel methodologist rated each article according to the strength of evidence. Four studies were rated as level I evidence, 14 studies were rated as level II evidence, and the remaining studies were rated as level III evidence. The majority of published studies evaluated a single laser platform. Flap reproducibility varied by device and the generation of the device. Standard deviations in flap thicknesses ranged from 4 to 18.4 μm. Visual acuities and complications reported with LASIK flaps created using femtosecond lasers are within Food and Drug Administration safety and efficacy limits. Of all complications, diffuse lamellar keratitis is the most common after surgery but is generally mild and self-limited. Corneal sensation was reported to normalize by 1 year after surgery. Unique complications of femtosecond lasers included transient light-sensitivity syndrome, rainbow glare, opaque bubble layer, epithelial breakthrough of gas bubbles, and gas bubbles within the anterior chamber. Available evidence (levels I and II) indicates that femtosecond lasers are efficacious devices for creating LASIK flaps, with accompanying good visual results. Overall, femtosecond lasers were found to be as good as or better than mechanical microkeratomes for creating LASIK flaps. There are unique complications that can occur with femtosecond lasers, and long-term follow-up is needed to evaluate the technology fully

    Electrophilic PPARγ ligands inhibit corneal fibroblast to myofibroblast differentiation in vitro: A potentially novel therapy for corneal scarring

    No full text
    A critical component of corneal scarring is the TGFβ-induced differentiation of corneal keratocytes into myofibroblasts. Inhibitors of this differentiation are potentially therapeutic for corneal scarring. In this study, we tested the relative effectiveness and mechanisms of action of two electrophilic peroxisome proliferator-activated receptor gamma (PPARγ) ligands: cyano-3,12-dioxolean-1,9-dien-28-oic acid-metheyl ester (CDDO-Me) and 15-deoxy-Δ-12,14-prostaglandin J(2) (15d-PGJ(2)) for inhibiting TGFβ-induced myofibroblast differentiation in vitro. TGFβ was used to induce myofibroblast differentiation in cultured, primary human corneal fibroblasts. CDDO-Me and 15d-PGJ(2) were added to cultures to test their ability to inhibit this process. Myofibroblast differentiation was assessed by measuring the expression of myofibroblast-specific proteins (αSMA, collagen I, and fibronectin) and mRNA (αSMA and collagen III). The role of PPARγ in the inhibition of myofibroblast differentiation by these agents was tested in genetically and pharmacologically manipulated cells. Finally, we assayed the importance of electrophilicity in the actions of these agents on TGFβ-induced αSMA expression via Western blotting and immunofluorescence. Both electrophilic PPARγ ligands (CDDO-Me and 15d-PGJ(2)) potently inhibited TGFβ-induced myofibroblast differentiation, but PPARγ was only partially required for inhibition of myofibroblast differentiation by either agent. Electrophilic PPARγ ligands were able to inhibit myofibroblast differentiation more potently than non-electrophilic PPARγ ligands, suggesting an important role of electrophilicity in this process. CDDO-Me and 15d-PGJ(2) are strong inhibitors of TGFβ-induced corneal fibroblast to myofibroblast differentiation in vitro, suggesting this class of agents as potential novel therapies for corneal scarring warranting further study in pre-clinical animal models
    corecore