3 research outputs found

    Automated distal coronary bypass with a novel magnetic coupler (MVP system)

    Get PDF
    AbstractObjectiveWe sought to assess the feasibility of performing sutureless distal coronary artery bypass anastomoses with a novel magnetic coupling device.MethodsFrom May 2000 to April 2001, single-vessel side-to-side coronary artery bypass grafting on a beating heart was performed in 39 domestic white pigs (35-60 kg) without the use of mechanical stabilization, shunts, or perfusion bridges. Animals were divided into 2 groups. Seventeen pigs underwent right internal thoracic artery to right coronary artery bypass grafting through a median sternotomy (group 1) with a novel magnetic vascular positioning system (MVP system; Ventrica, Inc, Fremont, Calif). Twenty-two pigs underwent left internal thoracic artery to left anterior descending artery grafting with the MVP anastomotic device through a left anterior minithoracotomy (group 2). This system consists of 2 pairs of elliptical magnetic implants and a deployment device. One pair of magnets forms the anastomotic docking port within the graft; the other pair forms an identical anastomotic docking port within the target vessel. The anastomosis is created when the 2 docking ports magnetically couple. Anastomotic patency was evaluated by means of angiography during the first postoperative week and at 1 month. Histologic studies were performed at different time points as late as 6 months.ResultsRight internal thoracic artery to right coronary artery anastomoses and left internal thoracic artery to left anterior descending artery anastomoses were successfully performed with the system in all animals. The self-adherent and self-aligning properties of the implants allowed for immediate and secure approximation of the arteries (total anastomotic time between 2-3 minutes). Anastomoses were constructed without a stabilization platform. Five nondevice-related deaths occurred postoperatively. One-week angiography, performed in 35 surviving animals, showed a patent graft and anastomosis in all cases. The patency rate at 1 month was 97% (33/34). Histologic studies as late as 6 months demonstrated neointimal coverage of the magnets without any significant luminal obstruction. Histology also confirmed the presence of viable tissue between magnets.ConclusionThe MVP anastomotic system uses magnetic force to create rapid and secure distal coronary artery anastomoses, which might facilitate minimally invasive and totally endoscopic coronary artery bypass surgery

    Inhibition of mast cell-dependent anaphylaxis by sodium salicylate

    No full text
    Sodium salicylate (NaSal) is a commonly used agent with a wide pharmacological spectrum. The objective of the present study was to investigate the effect of NaSal on anaphylaxis. NaSal (10−1 and 1 mm) significantly inhibited systemic anaphylaxis induced by compound 48/80 in rats. NaSal also significantly inhibited local anaphylaxis activated by anti-dinitrophenyl (DNP) immunoglobulin E (IgE). NaSal (10−1 and 1 mm) significantly inhibited histamine release from rat peritoneal mast cells (RPMC) activated by compound 48/80 or anti-DNP IgE. Northern-blot analysis demonstrated that a significantly reduced level of the mRNA of l-histidine decarboxylase was expressed in mast cells treated with NaSal, compared with that without NaSal. NaSal (10−2 and 10−1 mm) had a significant inhibitory effect on anti-DNP IgE-induced tumour necrosis factor-α secretion from RPMC. The level of cyclic AMP in RPMC, when NaSal (1 mm) was added, transiently and significantly increased about sixfold compared with that of basal cells. These results suggest a possible use of NaSal in managing mast cell-dependent anaphylaxis
    corecore