60 research outputs found

    Guanosine fast onset antidepressant-like effects in the olfactory bulbectomy mice model

    Get PDF
    The treatment of major depressive disorder (MDD) is still a challenge. In the search for novel antidepressants, glutamatergic neuromodulators have been investigated as possible fast-acting antidepressants. Innovative studies suggest that the purine cycle and/or the purinergic signaling can be dysregulated in MDD, and the endogenous nucleoside guanosine has gained attention due to its extracellular effects. This study aimed to verify if guanosine produces fast-onset effects in the wellvalidated, reliable and sensitive olfactory bulbectomy (OBX) model of depression. The involvement of the mTOR pathway, a key target for the fast-onset effect of ketamine, was also investigated. Results show that a single i.p. injection of guanosine, or ketamine, completely reversed the OBX-induced anhedonic-like behavior 24 or 48 h post treatment, as well as the short-term recognition memory impairment 48 h post treatment. The antidepressant-like effects of guanosine and ketamine were completely abolished by rapamycin. This study shows, for the first time, that guanosine, in a way similar to ketamine, is able to elicit a fast antidepressant response in the OBX model in mice. The results support the notion that guanosine represents a new road for therapeutic improvement in MDD

    Immune system challenge improves recognition memory and reverses malaria-induced cognitive impairment in mice

    Get PDF
    The immune system plays a role in the maintenance of healthy neurocognitive function. Different patterns of immune response triggered by distinct stimuli may affect nervous functions through regulatory or deregulatory signals, depending on the properties of the exogenous immunogens. Here, we investigate the effect of immune stimulation on cognitive-behavioural parameters in healthy mice and its impact on cognitive sequelae resulting from non-severe experimental malaria. We show that immune modulation induced by a specific combination of immune stimuli that induce a type 2 immune response can enhance long-term recognition memory in healthy adult mice subjected to novel object recognition task (NORT) and reverse a lack of recognition ability in NORT and anxiety-like behaviour in a light/dark task that result from a single episode of mild Plasmodium berghei ANKA malaria. Our findings suggest a potential use of immunogens for boosting and recovering recognition memory that may be impaired by chronic and infectious diseases and by the effects of ageing

    The potential therapeutic effect of guanosine after cortical focal ischemia in rats

    Get PDF
    Background and Purpose: Stroke is a devastating disease. Both excitotoxicity and oxidative stress play important roles in ischemic brain injury, along with harmful impacts on ischemic cerebral tissue. As guanosine plays an important neuroprotective role in the central nervous system, the purpose of this study was to evaluate the neuroprotective effects of guanosine and putative cerebral events following the onset of permanent focal cerebral ischemia. Methods: Permanent focal cerebral ischemia was induced in rats by thermocoagulation. Guanosine was administered immediately, 1 h, 3 h and 6 h after surgery. Behavioral performance was evaluated by cylinder testing for a period of 15 days after surgery. Brain oxidative stress parameters, including levels of ROS/RNS, lipid peroxidation, antioxidant nonenzymatic levels (GSH, vitamin C) and enzymatic parameters (SOD expression and activity and CAT activity), as well as glutamatergic parameters (EAAC1, GLAST and GLT1, glutamine synthetase) were analyzed. Results: After 24 h, ischemic injury resulted in impaired function of the forelimb, caused brain infarct and increased lipid peroxidation. Treatment with guanosine restored these parameters. Oxidative stress markers were affected by ischemic insult, demonstrated by increased ROS/RNS levels, increased SOD expression with reduced SOD activity and decreased nonenzymatic (GSH and vitamin C) antioxidant defenses. Guanosine prevented increased ROS/RNS levels, decreased SOD activity, further increased SOD expression, increased CAT activity and restored vitamin C levels. Ischemia also affected glutamatergic parameters, illustrated by increased EAAC1 levels and decreased GLT1 levels; guanosine reversed the decreased GLT1 levels and did not affect the EAAC1 levels. Conclusion: The effects of brain ischemia were strongly attenuated by guanosine administration. The cellular mechanisms involved in redox and glutamatergic homeostasis, which were both affected by the ischemic insult, were also modulated by guanosine. These observations reveal that guanosine may represent a potential therapeutic agent in cerebral ischemia by preventing oxidative stress and excitotoxicity

    Behavioral manifestations in rodent models of autism spectrum disorder : protocol for a systematic review and network meta-analysis

    Get PDF
    Background: Autism spectrum disorder (ASD) is a neurodevelopmental condition associated with severe social communication, interaction, and sensory processing impairments. Efforts to understand its etiology and pathophysiology are crucial for improving treatment and prevention measures. Preclinical models of ASD are essential for investigating the biological mechanisms and should present translatability potential. We aim to evaluate the consistency of the most commonly used rodent models of ASD in displaying autistic-like behavior through a systematic review and meta-analysis. Methods: This review will focus on the most frequently used autism models, surveying studies of six genetic (Ube3a, Pten, Nlgn3, Shank3, Mecp2, and Fmr1), three chemically induced (valproic acid (VPA), lipopolysaccharide (LPS), and polyinosinic:polycytidylic acid (poly(I:C))), and one inbred model (BTBR T+ Itpr3tf/J mouse strain). Two independent reviewers will screen the records. Data extraction of behavioral outcomes and risk of bias evaluation will be performed. We will conduct a meta-analysis whenever at least five studies investigate the same model and behavioral outcome. We will also explore the heterogeneity and publication bias. Network meta-analyses are planned to compare different models. Discussion: By shortening the gap between animal behavior and human endophenotypes or specific clinical symptoms, we expect to help researchers on which rodent models are adequate for research of specific behavioral manifestations of autism, which potentially require a combination of them depending on the research interest

    Association of organized physical activity and levels of cardiorespiratory fitness with indicators of mental health in children

    Get PDF
    To verify the associations between organized physical activity out of school (PA) and cardiorespiratory fitness (CRF) with indicators of mental health in children. Methods: This is a cross-sectional study, with a sample of 226 students (47% girls) of public school in the south of Brazil aged between 6 to 11 years-old (8.36 ± 1.46). The cardiorespiratory fitness was measured by running and walking-test in six minutes, following the procedures of the “Brazil Sports Project”. PA was evaluated through a question and the Strengths and Difficulties Questionnaire assessed mental health indicators. Generalized linear regressions were used with a confidence interval of 95%. Results: Total difficulties (ÎČ = 2.691; 95%CI, 0.181 to 5.200) and emotional symptoms (ÎČ = 1.528; 95%CI, 0.609 to 2.448) were inversely associated with PA. Total difficulties (ÎČ = -0.013; 95%CI, -0.022 to -0.003), hyperactivity/attention deficit (ÎČ = -0.002; 95%CI, -0.010 to -0.002), and peer relationship problems (ÎČ = -0.002; 95%CI, -0.003 to -0.001) were associated with CRF in boys. Conclusion: A total of difficulties and emotional problems presented an inverse association with PA. Further, CRF was inversely associated with total difficulties, hyperactivity-inattention, and peer relationship problems

    Neuroinflammation and neuromodulation in neurological diseases

    Get PDF
    Neuroimmunology is a relatively young science. This discipline has emerged today from the research field as a mature and fully developed innovative research area that integrates not only pure topics of neuroimmunology, but also expands on wider fields such as neuroplasticity, neuronal reserve and neuromodulation in association with clinical events, amongst which behavioral disorders stand out. The Cuban School of Neuroimmunology—a recent meeting that took place in Havana, Cuba—focused on topics based on the molecular mechanisms of neuroinflammation in neurological disorders involving behavioral manifestations, such as multiple sclerosis (MS), autism, cerebellar ataxias, Alzheimer®s disease and stroke among others, as well as on the use of new interventional technologies in neurology. Professor Luis Velazquez, from the Cuban Academy of Sciences, dictated an interesting lecture on Spinocerebellar ataxias, a genetic disorder where recent hypotheses related to the influence of neuroinflammation as a neurobiological factor influencing the progression of this disease have emerged. At the same time, the use of new interventional technologies in neurology was discussed, including those referring to novel disease modifying therapies in the course of MS and the use of transcranial magnetic stimulation in several neurological diseases, the latter reinforcing how interventional strategies in the form of non-invasive bran stimulation can contribute to physical rehabilitation in neurology. This paper summarizes the highlights of the most relevant topics presented during the First Cuban School of Neuroimmunology, organized by the Cuban Network of Neuroimmunology, held in June 2019

    High fat diet-induced obesity causes a reduction in brain tyrosine hydroxylase levels and non-motor features in rats through metabolic dysfunction, neuroinflammation and oxidative stress

    Get PDF
    Obesity is a health problem that has been associated with neuroinflammation, decreased cognitive functions and development of neurodegenerative diseases. Parkinson’s disease (PD) is a chronic neurodegenerative condition characterized by motor and non-motor abnormalities, increased brain inflammation, α-synuclein protein aggregation and dopaminergic neuron loss that is associated with decreased levels of tyrosine hydroxylase (TH) in the brain. Diet-induced obesity is a global epidemic and its role as a risk factor for PD is not clear. Herein, we showed that 25 weeks on a high-fat diet (HFD) promotes significant alterations in the nigrostriatal axis of Wistar rats. Obesity induced by HFD exposure caused a reduction in TH levels and increased TH phosphorylation at serine 40 in the ventral tegmental area. These effects were associated with insulin resistance, increased tumor necrosis factor-α levels, oxidative stress, astrogliosis and microglia activation. No difference was detected in the levels of α-synuclein. Obesity also induced impairment of locomotor activity, total mobility and anxiety-related behaviors that were identified in the open-field and light/dark tasks. There were no changes in motor coordination or memory. Together, these data suggest that the reduction of TH levels in the nigrostriatal axis occurs through an α-synuclein-independent pathway and can be attributed to brain inflammation, oxidative/nitrosative stress and metabolic disorders induced by obesit
    • 

    corecore