497 research outputs found

    Evidence for Terrestrial Planetary System Remnants at White Dwarfs

    Full text link
    The last several years have brought about a dynamic shift in the view of exoplanetary systems in the post-main sequence, perhaps epitomized by the evidence for surviving rocky planetary bodies at white dwarfs. Coinciding with the launch of the Spitzer Space Telescope, both space- and ground-based data have supported a picture whereby asteroid analogs persist at a significant fraction of cool white dwarfs, and are prone to tidal disruption when passing close to the compact stellar remnant. The ensuing debris can produce a detectable infrared excess, and the material gradually falls onto the star, polluting the atmosphere with heavy elements that can be used to determine the bulk composition of the destroyed planetary body. Based on the observations to date, the parent bodies inferred at white dwarfs are best described as asteroids, and have a distinctly rocky composition similar to material found in the inner Solar System. Their minimum masses are typical of large asteroids, and can approach or exceed the mass of Vesta and Ceres, the two largest asteroids in the Solar System. From the number of stars surveyed in various studies, the fraction of white dwarfs that host terrestrial planetary system remnants is at least a few percent, but likely to be in the range 20% to 30%. Therefore, A- and F-type stars form terrestrial planets efficiently, with a frequency at least as high as the remnants detected at their white dwarf descendants.Comment: Invited Review. Part of PlanetsbeyondMS/2010 proceedings http://arxiv.org/html/1011.660

    Limits on Unresolved Planetary Companions to White Dwarf Remnants of 14 Intermediate-Mass Stars

    Full text link
    We present Spitzer IRAC photometry of white dwarf remnants of 14 stars with M = 3-5 Msol. We do not detect mid-infrared excess around any of our targets. By demanding a 3 sigma photometric excess at 4.5 micron for unresolved companions, we rule out planetary mass companions down to 5, 7, or 10 M_J for 13 of our targets based on the Burrows et al. (2003) substellar cooling models. Combined with previous IRAC observations of white dwarf remnants of intermediate-mass stars, we rule out \geq 10 M_J companions around 40 white dwarfs and \geq 5 M_J companions around 10 white dwarfs.Comment: ApJ, in press. Fixed a numerical error in the abstract v

    Gaseous Material Orbiting the Polluted, Dusty White Dwarf HE1349-2305

    Get PDF
    We present new spectroscopic observations of the polluted, dusty, helium-dominated atmosphere white dwarf star HE1349-2305. Optical spectroscopy reveals weak CaII infrared triplet emission indicating that metallic gas debris orbits and is accreted by the white dwarf. Atmospheric abundances are measured for magnesium and silicon while upper limits for iron and oxygen are derived from the available optical spectroscopy. HE1349-2305 is the first gas disk-hosting white dwarf star identified amongst previously known polluted white dwarfs. Further characterization of the parent body polluting this star will require ultraviolet spectroscopy.Comment: 16 pages, 2 figures, 3 tables. Accepted for publication in ApJ Letter

    Infrared Signatures of Disrupted Minor Planets at White Dwarfs

    Full text link
    Spitzer Space Observatory IRAC and MIPS photometric observations are presented for 20 white dwarfs with T < 20,000 K and metal-contaminated photospheres. A warm circumstellar disk is detected at GD 16 and likely at PG 1457-086, while the remaining targets fail to reveal mid-infrared excess typical of dust disks, including a number of heavily polluted stars. Extending previous studies, over 50% of all single white dwarfs with implied metal accretion rates dM/dt > 3e8 g/s display a warm infrared excess from orbiting dust; the likely result of a tidally-destroyed minor planet. This benchmark accretion rate lies between the dust production rates of 1e6 g/s in the solar system zodiacal cloud and 1e10 g/s often inferred for debris disks at main sequence A-type stars. It is estimated that between 1% and 3% of all single white dwarfs with cooling ages less than around 0.5 Gyr possess circumstellar dust, signifying an underlying population of minor planets.Comment: 47 pages, accepted to Ap

    Evidence of Rocky Planetesimals Orbiting Two Hyades Stars

    Full text link
    The Hyades is the nearest open cluster, relatively young and containing numerous A-type stars; its known age, distance, and metallicity make it an ideal site to study planetary systems around 2-3 Msun stars at an epoch similar to the late heavy bombardment. Hubble Space Telescope far-ultraviolet spectroscopy strongly suggests ongoing, external metal pollution in two remnant Hyads. For ongoing accretion in both stars, the polluting material has log[n(Si)/n(C)] > 0.2, is more carbon deficient than chondritic meteorites, and is thus rocky. These data are consistent with a picture where rocky planetesimals and small planets have formed in the Hyades around two main-sequence A-type stars, whose white dwarf descendants bear the scars. These detections via metal pollution are shown to be equivalent to infrared excesses of Lir/L* ~ 1e-6 in the terrestrial zone of the stars.Comment: 7 pages, 3 figures, 2 tables, accepted to MNRA

    Non-LTE models for the gaseous metal component of circumstellar discs around white dwarfs

    Full text link
    Gaseous metal discs around single white dwarfs have been discovered recently. They are thought to develop from disrupted planetary bodies. Spectroscopic analyses will allow us to study the composition of extrasolar planetary material. We investigate in detail the first object for which a gas disc was discovered (SDSS J122859.93+104032.9). Therefor we perform non-LTE modelling of viscous gas discs by computing the detailed vertical structure and line spectra. The models are composed of carbon, oxygen, magnesium, silicon, calcium, and hydrogen with chemical abundances typical for Solar System asteroids. Line asymmetries are modelled by assuming spiral-arm and eccentric disc structures as suggested by hydrodynamical simulations. The observed infrared Ca II emission triplet can be modelled with a hydrogen-deficient metal gas disc located inside of the tidal disruption radius, with an effective temperature of about 6000 K and a surface mass density of 0.3 g/cm^2. The inner radius is well constrained at about 0.64 Solar radii. The line profile asymmetry can be reproduced by either a spiral-arm structure or an eccentric disc, the latter being favoured by its time variability behaviour. Such structures, reaching from 0.64 to 1.5 Solar radii, contain a mass of about 3 to 6*10^21 g, the latter equivalent to the mass of a 135-km diameter Solar System asteroid.Comment: 7 pages, 10 figures, accepted for publication in A&

    White Dwarf - Red Dwarf Systems Resolved with the Hubble Space Telescope. II. Full Snapshot Survey Results

    Get PDF
    Results are presented for a Hubble Space Telescope Advanced Camera for Surveys high-resolution imaging campaign of 90 white dwarfs with known or suspected low mass stellar and substellar companions. Of the 72 targets which remain candidate and confirmed white dwarfs with near-infrared excess, 43 are spatially resolved into two or more components, and a total of 12 systems are potentially triples. There is a possible, slight deficit of earlier spectral types (bluer colors) among the spatially unresolved companions, exactly the opposite of expectations if significant mass is transferred to the companion during the common envelope phase. Using the best available distance estimates, the low mass companions to white dwarfs exhibit a bimodal distribution in projected separation. This result supports the hypothesis that during the giant phases of the white dwarf progenitor, any unevolved companions either migrate inward to short periods of hours to days, or outward to periods of hundreds to thousands of years. No intermediate projected separations of a few to several AU are found among these pairs. However, a few double M dwarfs (within triples) are spatially resolved in this range, empirically demonstrating that such separations were readily detectable among the binaries with white dwarfs. A straightforward and testable prediction emerges: all spatially unresolved, low mass stellar and substellar companions to white dwarfs should be in short period orbits. This result has implications for substellar companion and planetary orbital evolution during the post-main sequence lifetime of their stellar hosts.Comment: Accepted to ApJ Supplement Series, emulateapj format, 14 figures, 8 table

    Spitzer IRAC Observations of White Dwarfs. I. Warm Dust at Metal-Rich Degenerates

    Get PDF
    This paper presents the results of a Spitzer IRAC 3-8 micron photometric search for warm dust orbiting 17 nearby, metal-rich white dwarfs, 15 of which apparently have hydrogen dominated atmospheres (type DAZ). G166-58, G29-38, and GD 362 manifest excess emission in their IRAC fluxes and the latter two are known to harbor dust grains warm enough to radiate detectable emission at near-infrared wavelengths as short as 2 micron. Their IRAC fluxes display differences compatible with a relatively larger amount of cooler dust at GD 362. G166-58 is presently unique in that it appears to exhibit excess flux only at wavelengths longer than about 5 micron. Evidence is presented that this mid-infrared emission is most likely associated with the white dwarf, indicating that G166-58 bears circumstellar dust no warmer than T~400 K. The remaining 14 targets reveal no reliable mid-infrared excess, indicating the majority of DAZ stars do not have warm debris disks sufficiently opaque to be detected by IRAC.Comment: Accepted to ApJ, 10 figures, 6 table

    Near-Infrared Constraints on the Presence of Warm Dust at Metal-Rich, Helium Atmosphere White Dwarfs

    Get PDF
    Here, we present near-infrared spectroscopic observations of 15 helium atmosphere, metal-rich white dwarfs obtained at the NASA Infrared Telescope Facility. While a connection has been demonstrated between the most highly polluted, hydrogen atmosphere white dwarfs and the presence of warm circumstellar dust and gas, their frequency at the helium atmosphere variety is poorly constrained. None of our targets show excess near-infrared radiation consistent with warm orbiting material. Adding these near-infrared constraints to previous near- and mid-infrared observations, the frequency of warm circumstellar material at metal-bearing white dwarfs is at least 20% for hydrogen-dominated photospheres, but could be less than 5% for those effectively composed of helium alone. The lower occurrence of dust disks around helium atmosphere white dwarfs is consistent with Myr timescales for photospheric metals in massive convection zones. Analyzing the mass distribution of 10 white dwarfs with warm circumstellar material, we search for similar trends between the frequency of disks and the predicted frequency of massive planets around intermediate mass stars, but find the probability that disk-bearing white dwarfs are more massive than average is not significant.Comment: AJ, in pres

    Spectral synthesis of circumstellar disks - application to white dwarf debris disks

    Full text link
    Gas and dust disks are common objects in the universe and can be found around various objects, e.g. young stars, cataclysmic variables, active galactic nuclei, or white dwarfs. The light that we receive from disks provides us with clues about their composition, temperature, and density. In order to better understand the physical and chemical dynamics of these disks, self-consistent radiative transfer simulations are inevitable. Therefore, we have developed a 1+1D radiative transfer code as an extension to the well-established model atmosphere code \verb!PHOENIX!. We will show the potential of the application of our code to model the spectra of white dwarf debris disks.Comment: 4 pages, 4 figures, to appear in: Proceedings of the 16th European Workshop on White Dwarf
    • …
    corecore