20 research outputs found

    Multidimensional turbulence spectra - Statistical analysis of turbulent vortices

    Get PDF
    Strong nonlinear or very fast phenomena such as mixing, coalescence and breakup in chemical engineering processes, are not correctly described using average turbulence properties. Since these phenomena are modeled by the interaction of fluid particles with single or paired vortices, distribution of the properties of individual turbulent vortices should be studied and understood. In this paper, statistical analysis of turbulent vortices was performed using a novel vortex tracking algorithm. The vortices were identified using the normalized Q-criterion with extended volumes calculated using the Biot Savart law in order to capture most of the coherent structure related to each vortex. This new and fast algorithm makes it possible to estimate the volume of all resolved vortices. Turbulence was modeled using large-eddy simulation with the dynamic Smagorinsky-Lilly subgrid scale model for different Reynolds numbers. Number density of turbulent vortices were quantified and compared with different models. It is concluded that the calculated number densities for vortices in the inertial subrange and also for the larger scales are in very good agreement with the models proposed by Batchelor and Martinez-Bazan. Moreover, the associated enstrophy within the same size of coherent structures is quantified and its distribution is compared to models for distribution of turbulent kinetic energy. The associated enstrophy within the same size of coherent structures has a wide distribution that is normal distributed in the logarithmic scale

    Structures, Properties and Dynamics of Turbulent Vortices

    No full text
    The development of models for several phenomena that occur in turbulent single- and multi-phase flows requires improved descriptions and quantifications of turbulent vortices. In many engineering applications, the time scale of these phenomena is equal to or smaller than the lifetime of turbulent vortices; consequently, they are not adequately described by using average turbulence properties. The above mentioned phenomena are better described by the properties of single turbulent vortices, e.g. number density, size, enstrophy, energy, lifetime and vortex dynamics. In this thesis, a vortex-tracking algorithm that meets the thesis objectives was successfully developed. Using the Biot-Savart law and morphological methods, the vortex-tracking algorithm captures most of the coherent turbulent structure in individual vortices with clear separated boundaries. The novel vortex-tracking algorithm increases the total energy captured within individual vortices from 27% to 82%. The vortex-tracking algorithm works efficiently and fast. It allows for the identification of thousands of vortices individually, while different properties attributed to them can be quantified. Additionally, a new model for the number density of turbulent vortices in the entire energy spectrum was developed. This model significantly improves the prediction of the turbulent vortices number density. Moreover, it was observed that the number densities of turbulent vortices, modeled and quantified, vary at different radial locations, e.g. where the highest number density is found in the near-wall region and the lowest number density is found in the bulk of the flow. In addition to this, the average size distributions of turbulent vortices show that the sizes of vortices increase from the near-wall region to the bulk of the flow. It was concluded that the associated enstrophy and energy within turbulent vortices of the same size was log-normal distributed. The research in this thesis also examines the lifetimes of vortices. It was found that the lifetime of turbulent vortices depends on vortex size, energy and position. Also, it was concluded that the lifetime of turbulent vortices can be reasonably estimated base on their sizes and positions. Moreover, the birth frequencies of turbulent vortices were also studied

    Analysis of Turbulent Flows-From Chaos to Structure

    No full text
    The development of models for several phenomena occurring in turbulent single and multi-phase flows requires improved description and quantification of turbulent structures. Phenomena such as, for example, mixing, coalescence and break-up, are often fast and nonlinear. In many engineering applications, the time scale is equal to or smaller than the lifetime of turbulent vortices; thus, these phenomena are not adequately described by using average turbulence properties. The interaction is better described by the properties of single turbulent vortices. For this reason, turbulence has been modeled using LES and with the help of the dynamic Smagorinsky-Lilly SGS model for different Reynolds numbers. As a result, an efficient vortex-tracking algorithm to identify and quantify thousands of vortices and their turbulent properties has been developed.This thesis presents the results of the analyses of a number of turbulent vortices. The results of these analyses of turbulent kinetic energy in turbulent structures, using the normalized Q criterion, showed that peak turbulent kinetic energy is located near the edge of the region identified as coherent, making the analysis challenging and model development difficult. Using the Biot-Savart law, it is possible to extend the region identified as coherent to capture the required amount of turbulent kinetic energy with the help of vortices. A detailed analysis of a small number of coherent vortices of turbulent pipe flow from LES revealed new information about the growth of these vortices (i.e. entrainment of the surrounding liquid), enstrophy and energy mechanisms over time.Furthermore, this thesis investigates the statistical properties of turbulent vortices including the number density and distribution of associated enstrophy within the same size of coherent structures. The statistical analysis of thousands of vortices was performed at different Reynolds numbers. The number densities of turbulent vortices were described as a function of spatial positions. The number density computed was highly compatible with the models suggested by Batchelor and Martinez for vortices located in the inertial subrange and those that were larger. Moreover, it was discovered that the associated enstrophy within the same size of coherent structures had a similarly wide distribution function as turbulent kinetic energy

    Structures, Properties and Dynamics of Turbulent Vortices

    No full text
    The development of models for several phenomena that occur in turbulent single- and multi-phase flows requires improved descriptions and quantifications of turbulent vortices. In many engineering applications, the time scale of these phenomena is equal to or smaller than the lifetime of turbulent vortices; consequently, they are not adequately described by using average turbulence properties. The above mentioned phenomena are better described by the properties of single turbulent vortices, e.g. number density, size, enstrophy, energy, lifetime and vortex dynamics. In this thesis, a vortex-tracking algorithm that meets the thesis objectives was successfully developed. Using the Biot-Savart law and morphological methods, the vortex-tracking algorithm captures most of the coherent turbulent structure in individual vortices with clear separated boundaries. The novel vortex-tracking algorithm increases the total energy captured within individual vortices from 27% to 82%. The vortex-tracking algorithm works efficiently and fast. It allows for the identification of thousands of vortices individually, while different properties attributed to them can be quantified. Additionally, a new model for the number density of turbulent vortices in the entire energy spectrum was developed. This model significantly improves the prediction of the turbulent vortices number density. Moreover, it was observed that the number densities of turbulent vortices, modeled and quantified, vary at different radial locations, e.g. where the highest number density is found in the near-wall region and the lowest number density is found in the bulk of the flow. In addition to this, the average size distributions of turbulent vortices show that the sizes of vortices increase from the near-wall region to the bulk of the flow. It was concluded that the associated enstrophy and energy within turbulent vortices of the same size was log-normal distributed. The research in this thesis also examines the lifetimes of vortices. It was found that the lifetime of turbulent vortices depends on vortex size, energy and position. Also, it was concluded that the lifetime of turbulent vortices can be reasonably estimated base on their sizes and positions. Moreover, the birth frequencies of turbulent vortices were also studied

    Analysis of Turbulent Flows-From Chaos to Structure

    No full text
    The development of models for several phenomena occurring in turbulent single and multi-phase flows requires improved description and quantification of turbulent structures. Phenomena such as, for example, mixing, coalescence and break-up, are often fast and nonlinear. In many engineering applications, the time scale is equal to or smaller than the lifetime of turbulent vortices; thus, these phenomena are not adequately described by using average turbulence properties. The interaction is better described by the properties of single turbulent vortices. For this reason, turbulence has been modeled using LES and with the help of the dynamic Smagorinsky-Lilly SGS model for different Reynolds numbers. As a result, an efficient vortex-tracking algorithm to identify and quantify thousands of vortices and their turbulent properties has been developed.This thesis presents the results of the analyses of a number of turbulent vortices. The results of these analyses of turbulent kinetic energy in turbulent structures, using the normalized Q criterion, showed that peak turbulent kinetic energy is located near the edge of the region identified as coherent, making the analysis challenging and model development difficult. Using the Biot-Savart law, it is possible to extend the region identified as coherent to capture the required amount of turbulent kinetic energy with the help of vortices. A detailed analysis of a small number of coherent vortices of turbulent pipe flow from LES revealed new information about the growth of these vortices (i.e. entrainment of the surrounding liquid), enstrophy and energy mechanisms over time.Furthermore, this thesis investigates the statistical properties of turbulent vortices including the number density and distribution of associated enstrophy within the same size of coherent structures. The statistical analysis of thousands of vortices was performed at different Reynolds numbers. The number densities of turbulent vortices were described as a function of spatial positions. The number density computed was highly compatible with the models suggested by Batchelor and Martinez for vortices located in the inertial subrange and those that were larger. Moreover, it was discovered that the associated enstrophy within the same size of coherent structures had a similarly wide distribution function as turbulent kinetic energy

    Multidimensional Turbulence Spectra- Properties of Turbulent Vortices

    No full text
    Detailed description of turbulence is necessary to predict chemical engineering processes and develop new models. Strong nonlinear or very fast phenomena, e.g. mixing, coalescence and break up, are not correctly described using average turbulence properties. This is due to the fact that they interact with single turbulent vortices. Results from development of a vortex tracking method and analysis of a number of turbulent vortices including turbulent kinetic energy, lifetime, and growth rate are presented in this paper. One striking observation was that the lifetimes of turbulent vortices close to the walls were much larger than expected from RANS modeling

    Identification and characterization of three-dimensional turbulent flow structures

    No full text
    Many phenomena in chemical processes for example fast mixing, coalescence and break-up of bubbles and drops are not correctly described using average turbulence properties as the outcome is governed by the interaction with individual vortices. In this study, an efficient vortex-tracking algorithm has been developed to identify thousands of vortices and quantify properties of the individual vortices. The traditional algorithms identifying vortex-cores only capture a fraction of the total turbulent kinetic energy, which is often not sufficient for modeling of coalescence and break-up phenomena. In the present algorithm, turbulent vortex-cores are identified using normalized Q-criterion, and allowed to grow using morphological methods. The growth is constrained by estimating the influence from all neighboring vortices using the Biot-Sawart law. This new algorithm allows 82% of the total turbulent kinetic to be captured, at the same time the individual vortices can be tracked in time. (c) 2015 American Institute of Chemical Engineers AIChE J, 62: 1265-1277, 201

    Multidimensional Turbulence Spectra- Properties of Turbulent Vortices

    No full text
    Detailed description of turbulence is necessary to predict chemical engineering processes and develop new models. Strong nonlinear or very fast phenomena, e.g. mixing, coalescence and break up, are not correctly described using average turbulence properties. This is due to the fact that they interact with single turbulent vortices. Results from development of a vortex tracking method and analysis of a number of turbulent vortices including turbulent kinetic energy, lifetime, and growth rate are presented in this paper. One striking observation was that the lifetimes of turbulent vortices close to the walls were much larger than expected from RANS modeling
    corecore