31 research outputs found
Subarachnoid-Pleural Fistula: Applied Anatomy of the Thoracic Spinal Nerve Root
Subarachnoid-pleural fistula (SPF) is a rare complication of chest or spine operations for neoplastic disease. Concomitant dural and parietal pleural defects permit flow of cerebrospinal fluid into the pleural cavity or intrapleural air into the subarachnoid space. Dural injury recognized intraoperatively permits immediate repair, but unnoticed damage may cause postoperative pleural effusion, intracranial hypotension, meningitis, or pneumocephalus. We review two cases of SPF following surgical intervention for chest wall metastatic disease to motivate a detailed review of the anatomy of neural, osseous, and ligamentous structures at the intervertebral foramen. We further provide recommendations for avoidance and detection of such complication
Recommended from our members
Discovery of Small-Molecule Enhancers of Reactive Oxygen Species That are Nontoxic or Cause Genotype-Selective Cell Death
Elevation of reactive oxygen species (ROS) levels has been observed in many cancer cells relative to nontransformed cells, and recent reports have suggested that small-molecule enhancers of ROS may selectively kill cancer cells in various in vitro and in vivo models. We used a high-throughput screening approach to identify several hundred small-molecule enhancers of ROS in a human osteosarcoma cell line. A minority of these compounds diminished the viability of cancer cell lines, indicating that ROS elevation by small molecules is insufficient to induce death of cancer cell lines. Three chemical probes (BRD5459, BRD56491, BRD9092) are highlighted that most strongly elevate markers of oxidative stress without causing cell death and may be of use in a variety of cellular settings. For example, combining nontoxic ROS-enhancing probes with nontoxic doses of l-buthionine sulfoximine, an inhibitor of glutathione synthesis previously studied in cancer patients, led to potent cell death in more than 20 cases, suggesting that even nontoxic ROS-enhancing treatments may warrant exploration in combination strategies. Additionally, a few ROS-enhancing compounds that contain sites of electrophilicity, including piperlongumine, show selective toxicity for transformed cells over nontransformed cells in an engineered cell-line model of tumorigenesis. These studies suggest that cancer cell lines are more resilient to chemically induced increases in ROS levels than previously thought and highlight electrophilicity as a property that may be more closely associated with cancer-selective cell death than ROS elevation.Chemistry and Chemical Biolog
Recommended from our members
A Small-Molecule Probe of the Histone Methyltransferase G9a Induces Cellular Senescence in Pancreatic Adenocarcinoma
Post-translational modifications of histones alter chromatin structure and play key roles in gene expression and specification of cell states. Small molecules that target chromatin-modifying enzymes selectively are useful as probes and have promise as therapeutics, although very few are currently available. G9a (also named euchromatin histone methyltransferase 2 (EHMT2)) catalyzes methylation of lysine 9 on histone H3 (H3K9), a modification linked to aberrant silencing of tumor-suppressor genes, among others. Here, we report the discovery of a novel histone methyltransferase inhibitor, BRD4770. This compound reduced cellular levels of di- and trimethylated H3K9 without inducing apoptosis, induced senescence, and inhibited both anchorage-dependent and -independent proliferation in the pancreatic cancer cell line PANC-1. ATM-pathway activation, caused by either genetic or small-molecule inhibition of G9a, may mediate BRD4770-induced cell senescence. BRD4770 may be a useful tool to study G9a and its role in senescence and cancer cell biology.Chemistry and Chemical Biolog
Continuous Multi-Parameter Heart Rate Variability Analysis Heralds Onset of Sepsis in Adults
BACKGROUND: Early diagnosis of sepsis enables timely resuscitation and antibiotics and prevents subsequent morbidity and mortality. Clinical approaches relying on point-in-time analysis of vital signs or lab values are often insensitive, non-specific and late diagnostic markers of sepsis. Exploring otherwise hidden information within intervals-in-time, heart rate variability (HRV) has been documented to be both altered in the presence of sepsis, and correlated with its severity. We hypothesized that by continuously tracking individual patient HRV over time in patients as they develop sepsis, we would demonstrate reduced HRV in association with the onset of sepsis. METHODOLOGY/PRINCIPAL FINDINGS: We monitored heart rate continuously in adult bone marrow transplant (BMT) patients (n = 21) beginning a day before their BMT and continuing until recovery or withdrawal (12+/-4 days). We characterized HRV continuously over time with a panel of time, frequency, complexity, and scale-invariant domain techniques. We defined baseline HRV as mean variability for the first 24 h of monitoring and studied individual and population average percentage change (from baseline) over time in diverse HRV metrics, in comparison with the time of clinical diagnosis and treatment of sepsis (defined as systemic inflammatory response syndrome along with clinically suspected infection requiring treatment). Of the 21 patients enrolled, 4 patients withdrew, leaving 17 patients who completed the study. Fourteen patients developed sepsis requiring antibiotic therapy, whereas 3 did not. On average, for 12 out of 14 infected patients, a significant (25%) reduction prior to the clinical diagnosis and treatment of sepsis was observed in standard deviation, root mean square successive difference, sample and multiscale entropy, fast Fourier transform, detrended fluctuation analysis, and wavelet variability metrics. For infected patients (n = 14), wavelet HRV demonstrated a 25% drop from baseline 35 h prior to sepsis on average. For 3 out of 3 non-infected patients, all measures, except root mean square successive difference and entropy, showed no significant reduction. Significant correlation was present amongst these HRV metrics for the entire population. CONCLUSIONS/SIGNIFICANCE: Continuous HRV monitoring is feasible in ambulatory patients, demonstrates significant HRV alteration in individual patients in association with, and prior to clinical diagnosis and treatment of sepsis, and merits further investigation as a means of providing early warning of sepsis
Recommended from our members
Niche-Based Screening in Multiple Myeloma Identifies a Kinesin-5 Inhibitor with Improved Selectivity over Hematopoietic Progenitors
Novel therapeutic approaches are urgently required for multiple myeloma (MM). We used a phenotypic screening approach using co-cultures of MM cells with bone marrow stromal cells to identify compounds that overcome stromal resistance. One such compound, BRD9876, displayed selectivity over normal hematopoietic progenitors and was discovered to be an unusual ATP non-competitive kinesin-5 (Eg5) inhibitor. A novel mutation caused resistance, suggesting a binding site distinct from known Eg5 inhibitors, and BRD9876 inhibited only microtubule-bound Eg5. Eg5 phosphorylation, which increases microtubule binding, uniquely enhanced BRD9876 activity. MM cells have greater phosphorylated Eg5 than hematopoietic cells, consistent with increased vulnerability specifically to BRD9876’s mode of action. Thus, differences in Eg5-microtubule binding between malignant and normal blood cells may be exploited to treat multiple myeloma. Additional steps are required for further therapeutic development, but our results indicate that unbiased chemical biology approaches can identify therapeutic strategies unanticipated by prior knowledge of protein targets
Recommended from our members
Advancing Biological Understanding and Therapeutics Discovery with Small-Molecule Probes
Small-molecule probes can illuminate biological processes and aid in the assessment of emerging therapeutic targets by perturbing biological systems in a manner distinct from other experimental approaches. Despite the tremendous promise of chemical tools for investigating biology and disease, small-molecule probes were unavailable for most targets and pathways as recently as a decade ago. In 2005, the U.S. National Institutes of Health launched the decade-long Molecular Libraries Program with the intent of innovating in and broadening access to small-molecule science. This Perspective describes how novel small-molecule probes identified through the program are enabling the exploration of biological pathways and therapeutic hypotheses not otherwise testable. These experiences illustrate how small-molecule probes can help bridge the chasm between biological research and the development of medicines, but also highlight the need to innovate the science of therapeutic discovery.Chemistry and Chemical Biolog
Gastropulmonary fistula after bariatric surgery
The Roux-en-Y gastric bypass is one of the most common operations for morbid obesity. Although rare, gastropulmonary fistulas are an important complication of this procedure. There is only one recently reported case of this complication. The present report describes the serious nature of this complication in a patient after an uneventful laparoscopic gastric bypass surgery
Scientific Overview of the CSCI-CITAC 2009 Conference
From September 21st-23rd 2009, the Clinical Investigator Trainee Association of Canada – Association des cliniciens-chercheurs en formation du Canada (CITAC-ACCFC) and the Canadian Society for Clinician Investigators (CSCI), held their annual conference in Ottawa. Participants included clinician investigators and trainees from across the country.
The conference featured many excellent guest speakers including this year’s recipient of the Henry G. Friesen International Prize in Health Research, Sir John Bell. There were several forums focusing on professional development, with topics such as “sustaining the clinician investigator in Canada”, “succeeding as a clinician investigator”, and “collaborating internationally with MD+ trainees”, alongside networking opportunities to help establish relationships with potential mentors and collaborators. Further, the CSCI-CITAC annual conference featured some of the cutting edge research that MD+ trainees throughout Canada are engaged in. Trainees presented their research either at the Young Investigators Forum poster session or at the oral plenary.
This scientific overview aims to highlight some of the research presented by trainees at the annual conference. The broad themes of scientific interest included topics from both basic science and clinical research. In this article, we summarize some of the major research questions that are being investigated by clinician-investigator trainees in the following areas: neurological sciences, cell biology, medicine, immunology, obstetrics, gynecology, neonatology, orthopedics, rheumatology, and public health