7,586 research outputs found
Healthy Kids Program and the Safety Net: Perceptions of Community Clinic Administrators
Based on interviews with clinic CEOs, assesses the impact of the program to provide comprehensive health insurance to children not eligible for Medi-Cal or Healthy Families, including enrollment, services extended, and clinic operations and finances
Introduction of a Quantum of Time (chronon), and its Consequences for Quantum Mechanics
We discuss the consequences of the introduction of a quantum of time in the formalism of non-relativistic quantum mechanics, by referring ourselves in particular to the theory of the chronon as proposed by P.Caldirola. Such an interesting "finite difference" theory, forwards ---at the classical level--- a solution for the motion of a particle endowed with a non-negligible charge in an external electromagnetic field, overcoming all the known difficulties met by Abraham-Lorentz's and Dirac's approaches (and even allowing a clear answer to the question whether a free falling charged particle does or does not emit radiation), and ---at the quantum level--- yields a remarkable mass spectrum for leptons. After having briefly reviewed Caldirola's approach, our first aim is to work out, discuss, and compare one another the new representations of Quantum Mechanics (QM) resulting from it, in the Schrödinger, Heisenberg and density-operator (Liouville-von Neumann) pictures, respectively. Moreover, for each representation, three ( retarded, symmetric and advanced) formulations are possible, which refer either to times and , or to times and , or to times and , respectively. It is interesting to notice that, when the chronon tends to zero, the ordinary QM is obtained as the limiting case of the "symmetric" formulation only; while the "retarded" one does naturally appear to describe QM with friction, i.e., to describe dissipative quantum systems (like a particle moving in an absorbing medium). In this sense, discretized QM is much richer than the ordinary one. We also obtain the (advanced) finite-difference Schrödinger equation within the Feynman path integral approach, and study some of its relevant solutions. W
HOW DOES COTTONSEED MEAL COMPARE AS AN ALTERNATIVE PROTEIN SOURCE TO SOYBEAN MEAL IN POULTRY PRODUCTION?
Profitability of substituting cottonseed meal (CSM) for soybean meal (SBM) in broiler feed is evaluated using a model that optimizes broiler production under changing market conditions. While CSM-fed broilers may earn higher profits for whole carcass, SBM-fed broilers are generally more profitable. Optimal protein levels exceed currently recommended levels.Livestock Production/Industries,
Optimization of the transmission of observable expectation values and observable statistics in Continuous Variable Teleportation
We analyze the statistics of observables in continuous variable quantum
teleportation in the formalism of the characteristic function. We derive
expressions for average values of output state observables in particular
cumulants which are additive in terms of the input state and the resource of
teleportation. Working with Squeezed Bell-like states, which may be optimized
in a free parameter for better teleportation performance we discuss the
relation between resources optimal for fidelity and for different observable
averages. We obtain the values of the free parameter which optimize the central
momenta and cumulants up to fourth order. For the cumulants the distortion
between in and out states due to teleportation depends only on the resource. We
obtain optimal parameters for the second and fourth order cumulants which do
not depend on the squeezing of the resource. The second order central momenta
which is equal to the second order cumulants and the photon number average are
optimized by the same resource. We show that the optimal fidelity resource,
found in reference (Phys. Rev. A {\bf 76}, 022301 (2007)) to depend also on the
characteristics of input, tends for high squeezing to the resource which
optimizes the second order momenta. A similar behavior is obtained for the
resource which optimizes the photon statistics which is treated here using the
sum of the squared differences in photon probabilities of input and output
states as the distortion measure. This is interpreted to mean that the
distortions associated to second order momenta dominates the behavior of the
output state for large squeezing of the resource. Optimal fidelity and optimal
photon statistics resources are compared and is shown that for mixtures of Fock
states they are equivalent.Comment: 25 pages, 11 figure
Adaptive Regret Minimization in Bounded-Memory Games
Online learning algorithms that minimize regret provide strong guarantees in
situations that involve repeatedly making decisions in an uncertain
environment, e.g. a driver deciding what route to drive to work every day.
While regret minimization has been extensively studied in repeated games, we
study regret minimization for a richer class of games called bounded memory
games. In each round of a two-player bounded memory-m game, both players
simultaneously play an action, observe an outcome and receive a reward. The
reward may depend on the last m outcomes as well as the actions of the players
in the current round. The standard notion of regret for repeated games is no
longer suitable because actions and rewards can depend on the history of play.
To account for this generality, we introduce the notion of k-adaptive regret,
which compares the reward obtained by playing actions prescribed by the
algorithm against a hypothetical k-adaptive adversary with the reward obtained
by the best expert in hindsight against the same adversary. Roughly, a
hypothetical k-adaptive adversary adapts her strategy to the defender's actions
exactly as the real adversary would within each window of k rounds. Our
definition is parametrized by a set of experts, which can include both fixed
and adaptive defender strategies.
We investigate the inherent complexity of and design algorithms for adaptive
regret minimization in bounded memory games of perfect and imperfect
information. We prove a hardness result showing that, with imperfect
information, any k-adaptive regret minimizing algorithm (with fixed strategies
as experts) must be inefficient unless NP=RP even when playing against an
oblivious adversary. In contrast, for bounded memory games of perfect and
imperfect information we present approximate 0-adaptive regret minimization
algorithms against an oblivious adversary running in time n^{O(1)}.Comment: Full Version. GameSec 2013 (Invited Paper
- …
