13 research outputs found

    Immunization of Mice with Formalin-Inactivated Spores from Avirulent \u3ci\u3eBacillus cereus\u3c/i\u3e Strains Provides Significant Protection from Challenge with \u3ci\u3eBacillus anthracis\u3c/i\u3e Ames

    Get PDF
    Bacillus anthracis spores are the infectious form of the organism for humans and animals. However, the approved human vaccine in the United States is derived from a vegetative culture filtrate of a toxigenic, nonencapsulated B. anthracis strain that primarily contains protective antigen (PA). Immunization of mice with purified spore proteins and formalin-inactivated spores (FIS) from a nonencapsulated, nontoxigenic B. anthracis strain confers protection against B. anthracis challenge when PA is also administered. To investigate the capacity of the spore particle to act as a vaccine without PA, we immunized mice subcutaneously with FIS from nontoxigenic, nonencapsulated B. cereus strain G9241 pBCXO1 ̅ /pBC210 ̅ (dcG9241), dcG9241 ΔbclA, or 569-UM20 or with exosporium isolated from dcG9241. FIS vaccination provided significant protection of mice from intraperitoneal or intranasal challenge with spores of the virulent B. anthracis Ames or Ames ΔbclA strain. Immunization with dcG9241 ΔbclA FIS, which are devoid of the immunodominant spore protein BclA, provided greater protection from challenge with either Ames strain than did immunization with FIS from BclA-producing strains. In addition, we used prechallenge immune antisera to probe a panel of recombinant B. anthracis Sterne spore proteins to identify novel immunogenic vaccine candidates. The antisera were variably reactive with BclA and with 10 other proteins, four of which were previously tested as vaccine candidates. Overall our data show that immunization with FIS from nontoxigenic, nonencapsulated B. cereus strains provides moderate to high levels of protection of mice from B. anthracis Ames challenge and that neither PA nor BclA is required for this protection

    Inhibitors of Venezuelan Equine Encephalitis Virus Identified Based on Host Interaction Partners of Viral Non-Structural Protein 3

    Full text link
    Venezuelan equine encephalitis virus (VEEV) is a new world alphavirus and a category B select agent. Currently, no FDA-approved vaccines or therapeutics are available to treat VEEV exposure and resultant disease manifestations. The C-terminus of the VEEV non-structural protein 3 (nsP3) facilitates cell-specific and virus-specific host factor binding preferences among alphaviruses, thereby providing targets of interest when designing novel antiviral therapeutics. In this study, we utilized an overexpression construct encoding HA-tagged nsP3 to identify host proteins that interact with VEEV nsP3 by mass spectrometry. Bioinformatic analyses of the putative interactors identified 42 small molecules with the potential to inhibit the host interaction targets, and thus potentially inhibit VEEV. Three inhibitors, tomatidine, citalopram HBr, and Z-VEID-FMK, reduced replication of both the TC-83 strain and the Trinidad donkey (TrD) strain of VEEV by at least 10-fold in astrocytoma, astroglial, and microglial cells. Further, these inhibitors reduced replication of the related New World (NW) alphavirus Eastern equine encephalitis virus (EEEV) in multiple cell types, thus demonstrating broad-spectrum antiviral activity. Time-course assays revealed all three inhibitors reduced both infectious particle production and positive-sense RNA levels post-infection. Further evaluation of the putative host targets for the three inhibitors revealed an interaction of VEEV nsP3 with TFAP2A, but not eIF2S2. Mechanistic studies utilizing siRNA knockdowns demonstrated that eIF2S2, but not TFAP2A, supports both efficient TC-83 replication and genomic RNA synthesis, but not subgenomic RNA translation. Overall, this work reveals the composition of the VEEV nsP3 proteome and the potential to identify host-based, broad spectrum therapeutic approaches to treat new world alphavirus infections

    Four Superoxide Dismutases Contribute to Bacillus anthracis Virulence and Provide Spores with Redundant Protection from Oxidative Stress▿ †

    Full text link
    The Bacillus anthracis genome encodes four superoxide dismutases (SODs), enzymes capable of detoxifying oxygen radicals. That two of these SODs, SOD15 and SODA1, are present in the outermost layers of the B. anthracis spore is indicated by previous proteomic analyses of the exosporium. Given the requirement that spores must survive interactions with reactive oxygen species generated by cells such as macrophages during infection, we hypothesized that SOD15 and SODA1 protect the spore from oxidative stress and contribute to the pathogenicity of B. anthracis. To test these theories, we constructed a double-knockout (Δsod15 ΔsodA1) mutant of B. anthracis Sterne strain 34F2 and assessed its lethality in an A/J mouse intranasal infection model. The 50% lethal dose of the Δsod15 ΔsodA1 strain was similar to that of the wild type (34F2), but surprisingly, measurable whole-spore SOD activity was greater than that in 34F2. A quadruple-knockout strain (Δsod15 ΔsodA1 ΔsodC ΔsodA2) was then generated, and as anticipated, spore-associated SOD activity was diminished. Moreover, the quadruple-knockout strain, compared to the wild type, was attenuated more than 40-fold upon intranasal challenge of mice. Spore resistance to exogenously generated oxidative stress and to macrophage-mediated killing correlated with virulence in A/J mice. Allelic exchange that restored sod15 and sodA1 to their wild-type state restored wild-type characteristics. We conclude that SOD molecules within the spore afford B. anthracis protection against oxidative stress and enhance the pathogenicity of B. anthracis in the lung. We also surmise that the presence of four SOD alleles within the genome provides functional redundancy for this key enzyme

    Inhibition of Venezuelan Equine Encephalitis Virus Using Small Interfering RNAs

    Full text link
    Acutely infectious new world alphaviruses such as Venezuelan Equine Encephalitis Virus (VEEV) pose important challenges to the human population due to a lack of effective therapeutic intervention strategies. Small interfering RNAs that can selectively target the viral genome (vsiRNAs) has been observed to offer survival advantages in several in vitro and in vivo models of acute virus infections, including alphaviruses such as Chikungunya virus and filoviruses such as Ebola virus. In this study, novel vsiRNAs that targeted conserved regions in the nonstructural and structural genes of the VEEV genome were designed and evaluated for antiviral activity in mammalian cells in the context of VEEV infection. The data demonstrate that vsiRNAs were able to effectively decrease the infectious virus titer at earlier time points post infection in the context of the attenuated TC-83 strain and the virulent Trinidad Donkey strain, while the inhibition was overcome at later time points. Depletion of Argonaute 2 protein (Ago2), the catalytic component of the RISC complex, negated the inhibitory effect of the vsiRNAs, underscoring the involvement of the siRNA pathway in the inhibition process. Depletion of the RNAi pathway proteins Dicer, MOV10, TRBP2 and Matrin 3 decreased viral load in infected cells, alluding to an impact of the RNAi pathway in the establishment of a productive infection. Additional studies focused on rational combinations of effective vsiRNAs and delivery strategies to confer better in vivo bioavailability and distribution to key target tissues such as the brain can provide effective solutions to treat encephalitic diseases resulting from alphavirus infections

    Detection of Bacillus anthracis Spore Germination In Vivo by Bioluminescence Imaging▿ †

    Full text link
    We sought to visualize the site of Bacillus anthracis spore germination in vivo. For that purpose, we constructed a reporter plasmid with the lux operon under control of the spore small acid-soluble protein B (sspB) promoter. In B. subtilis, sspB-driven synthesis of luciferase during sporulation results in incorporation of the enzyme in spores. We observed that B. anthracis Sterne transformed with our sspBp::lux plasmid was only luminescent during germination. In contrast, Sterne transformed with a similarly constructed plasmid with lux expression under control of the protective antigen promoter displayed luminescence only during vegetative growth. We then infected A/J mice intranasally with spores that harbored the germination reporter. Mice were monitored for up to 14 days with the Xenogen In Vivo Imaging System. While luminescence only became evident in live animals at 18 h, dissection after sacrificing infected mice at earlier time points revealed luminescence in lung tissue at 30 min after intranasal infection. Microscopic histochemical and immunofluorescence studies on luminescent lung sections and imprints revealed that macrophages were the first cells in contact with the B. anthracis spores. By 6 h after infection, polymorphonuclear leukocytes with intracellular spores were evident in the alveolar spaces. After 24 h, few free spores were observed in the alveolar spaces; most of the spores detected by immunofluorescence were in the cytoplasm of interstitial macrophages. In contrast, mediastinal lymph nodes remained nonluminescent throughout the infection. We conclude that in this animal system, the primary site of B. anthracis spore germination is the lungs

    Brilacidin Demonstrates Inhibition of SARS-CoV-2 in Cell Culture

    Full text link
    Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the newly emergent causative agent of coronavirus disease-19 (COVID-19), has resulted in more than two million deaths worldwide since it was first detected in 2019. There is a critical global need for therapeutic intervention strategies that can be deployed to safely treat COVID-19 disease and reduce associated morbidity and mortality. Increasing evidence shows that both natural and synthetic antimicrobial peptides (AMPs), also referred to as Host Defense Proteins/Peptides (HDPs), can inhibit SARS-CoV-2, paving the way for the potential clinical use of these molecules as therapeutic options. In this manuscript, we describe the potent antiviral activity exerted by brilacidin—a de novo designed synthetic small molecule that captures the biological properties of HDPs—on SARS-CoV-2 in a human lung cell line (Calu-3) and a monkey cell line (Vero). These data suggest that SARS-CoV-2 inhibition in these cell culture models is likely to be a result of the impact of brilacidin on viral entry and its disruption of viral integrity. Brilacidin demonstrated synergistic antiviral activity when combined with remdesivir. Collectively, our data demonstrate that brilacidin exerts potent inhibition of SARS-CoV-2 against different strains of the virus in cell culture

    Discovery and Biochemical Characterization of PlyP56, PlyN74, and PlyTB40—Bacillus Specific Endolysins

    Full text link
    Three Bacillus bacteriophage-derived endolysins, designated PlyP56, PlyN74, and PlyTB40, were identified, cloned, purified, and characterized for their antimicrobial properties. Sequence alignment reveals these endolysins have an N-terminal enzymatically active domain (EAD) linked to a C-terminal cell wall binding domain (CBD). PlyP56 has a Peptidase_M15_4/VanY superfamily EAD with a conserved metal binding motif and displays biological dependence on divalent ions for activity. In contrast, PlyN74 and PlyTB40 have T7 lysozyme-type Amidase_2 and carboxypeptidase T-type Amidase_3 EADs, respectively, which are members of the MurNAc-LAA superfamily, but are not homologs and thus do not have a shared protein fold. All three endolysins contain similar SH3-family CBDs. Although minor host range differences were noted, all three endolysins show relatively broad antimicrobial activity against members of the Bacillus cereus sensu lato group with the highest lytic activity against B. cereus ATCC 4342. Characterization studies determined the optimal lytic activity for these enzymes was at physiological pH (pH 7.0–8.0), over a broad temperature range (4–55 °C), and at low concentrations of NaCl (<50 mM). Direct comparison of lytic activity shows the PlyP56 enzyme to be twice as effective at lysing the cell wall peptidoglycan as PlyN74 or PlyTB40, suggesting PlyP56 is a good candidate for further antimicrobial development as well as bioengineering studies

    Antimicrobial Effects of Interferon-Inducible CXC Chemokines against Bacillus anthracis Spores and Bacilliâ–ż

    Full text link
    Based on previous studies showing that host chemokines exert antimicrobial activities against bacteria, we sought to determine whether the interferon-inducible Glu-Leu-Arg-negative CXC chemokines CXCL9, CXCL10, and CXCL11 exhibit antimicrobial activities against Bacillus anthracis. In vitro analysis demonstrated that all three CXC chemokines exerted direct antimicrobial effects against B. anthracis spores and bacilli including marked reductions in spore and bacillus viability as determined using a fluorometric assay of bacterial viability and CFU determinations. Electron microscopy studies revealed that CXCL10-treated spores failed to undergo germination as judged by an absence of cytological changes in spore structure that occur during the process of germination. Immunogold labeling of CXCL10-treated spores demonstrated that the chemokine was located internal to the exosporium in association primarily with the spore coat and its interface with the cortex. To begin examining the potential biological relevance of chemokine-mediated antimicrobial activity, we used a murine model of inhalational anthrax. Upon spore challenge, the lungs of C57BL/6 mice (resistant to inhalational B. anthracis infection) had significantly higher levels of CXCL9, CXCL10, and CXCL11 than did the lungs of A/J mice (highly susceptible to infection). Increased CXC chemokine levels were associated with significantly reduced levels of spore germination within the lungs as determined by in vivo imaging. Taken together, our data demonstrate a novel antimicrobial role for host chemokines against B. anthracis that provides unique insight into host defense against inhalational anthrax; these data also support the notion for an innovative approach in treating B. anthracis infection as well as infections caused by other spore-forming organisms
    corecore