13 research outputs found

    Exploring the Chemical Space of Kawakawa Leaf (<i>Piper excelsum</i>)

    No full text
    The chemical profiles of kawakawa (Piper excelsum) leaves were analysed through targeted and non-targeted LC-MS/MS. The phytochemical profile was obtained for both aqueous extracts representative of kawakawa tea and methanolic extracts. Sixty-four compounds were identified from eight leaf sources including phenylpropanoids, lignans, flavonoids, alkaloids and amides. Eight of these compounds were absolutely quantified. The chemical content varied significantly by leaf source, with two commercially available sources of dried kawakawa leaves being relatively high in phenylpropanoids and flavonoids compared with field-collected fresh samples that were richer in amides, alkaloids and lignans. The concentrations of pharmacologically active metabolites ingested from the traditional consumption of kawakawa leaf as an aqueous infusion, or from novel use as a seasoning, are well below documented toxicity thresholds

    Metabolic Disease Risk Alters Circulating Peripheral Blood Mononuclear Cell microRNAs in Response to A High Glycemic Meal

    No full text
    Background: High glycemic diets have been shown to exacerbate the risk of cardio-metabolicdisease in individuals with pre-existing disease risk, including obesity and insulin resistance,common to the Metabolic Syndrome (MetS). [...

    Circulatory miRNAs as Correlates of Elevated Intra-Pancreatic Fat Deposition in a Mixed Ethnic Female Cohort: The TOFI_Asia Study

    No full text
    Ectopic lipid accumulation, including intra-pancreatic fat deposition (IPFD), exacerbates type 2 diabetes risk in susceptible individuals. Dysregulated circulating microRNAs (miRNAs) have been identified as correlating with clinical measures of pancreatitis, pancreatic cancer and type 1 diabetes. The aim of the current study was therefore to examine the association between circulating abundances of candidate miRNAs, IPFD and liver fat deposition as quantified using magnetic resonance imaging (MRI) and spectroscopy (MRS). Asian Chinese (n = 34; BMI = 26.7 ± 4.2 kg/m2) and European Caucasian (n = 34; BMI = 28.0 ± 4.5 kg/m2) females from the TOFI_Asia cohort underwent MRI and MRS analysis of pancreas (MR-%IPFD) and liver fat (MR-%liver fat), respectively, to quantify ectopic lipid deposition. Plasma miRNA abundances of a subset of circulatory miRNAs associated with IPFD and liver fat deposition were quantified by qRT-PCR. miR-21-3p and miR-320a-5p correlated with MR-%IPFD, plasma insulin and HOMA2-IR, but not MR-%liver fat. MR-%IPFD remained associated with decreasing miR-21-3p abundance following multivariate regression analysis. miR-21-3p and miR-320a were demonstrated to be negatively correlated with MR-%IPFD, independent of ethnicity. For miR-21-3p, this relationship persists with the inclusion of MR-%liver fat in the model, suggesting the potential for a wider application as a specific circulatory correlate of IPFD.Education, Faculty ofNon UBCKinesiology, School ofReviewedFacultyResearche

    Protein Intake at Twice the RDA in Older Men Increases Circulatory Concentrations of the Microbiome Metabolite Trimethylamine-N-Oxide (TMAO)

    Get PDF
    Higher dietary protein intake is increasingly recommended for the elderly; however, high protein diets have also been linked to increased cardiovascular disease (CVD) risk. Trimethylamine-N-oxide (TMAO) is a bacterial metabolite derived from choline and carnitine abundant from animal protein-rich foods. TMAO may be a novel biomarker for heightened CVD risk. The purpose of this study was to assess the impact of a high protein diet on TMAO. Healthy men (74.2 ± 3.6 years, n = 29) were randomised to consume the recommended dietary allowance of protein (RDA: 0.8 g protein/kg bodyweight/day) or twice the RDA (2RDA) as part of a supplied diet for 10 weeks. Fasting blood samples were collected pre- and post-intervention for measurement of TMAO, blood lipids, glucose tolerance, insulin sensitivity, and inflammatory biomarkers. An oral glucose tolerance test was also performed. In comparison with RDA, the 2RDA diet increased circulatory TMAO (p = 0.002) but unexpectedly decreased renal excretion of TMAO (p = 0.003). LDL cholesterol was increased in 2RDA compared to RDA (p = 0.049), but no differences in other biomarkers of CVD risk and insulin sensitivity were evident between groups. In conclusion, circulatory TMAO is responsive to changes in dietary protein intake in older healthy males.Education, Faculty ofNon UBCKinesiology, School ofReviewedFacult
    corecore