5 research outputs found

    Global urban environmental change drives adaptation in white clover.

    Get PDF
    Urbanization transforms environments in ways that alter biological evolution. We examined whether urban environmental change drives parallel evolution by sampling 110,019 white clover plants from 6169 populations in 160 cities globally. Plants were assayed for a Mendelian antiherbivore defense that also affects tolerance to abiotic stressors. Urban-rural gradients were associated with the evolution of clines in defense in 47% of cities throughout the world. Variation in the strength of clines was explained by environmental changes in drought stress and vegetation cover that varied among cities. Sequencing 2074 genomes from 26 cities revealed that the evolution of urban-rural clines was best explained by adaptive evolution, but the degree of parallel adaptation varied among cities. Our results demonstrate that urbanization leads to adaptation at a global scale

    Diamond Blackfan anemia: a model for the translational approach to understanding human disease

    No full text
    Diamond Blackfan anemia (DBA) is an inherited bone marrow failure syndrome. As with the other rare inherited bone marrow failure syndromes, the study of these disorders provides important insights into basic biology and, in the case of DBA, ribosome biology; the disruption of which characterizes the disorder. Thus DBA serves as a paradigm for translational medicine in which the efforts of clinicians to manage DBA have informed laboratory scientists who, in turn, have stimulated clinical researchers to utilize scientific discovery to provide improved care. In this review we describe the clinical syndrome Diamond Blackfan anemia and, in particular, we demonstrate how the study of DBA has allowed scientific inquiry to create opportunities for progress in its understanding and treatment

    Diamond Blackfan anemia: a model for the translational approach to understanding human disease

    No full text

    Global urban environmental change drives adaptation in white clover

    No full text
    Urbanization transforms environments in ways that alter biological evolution. We examined whether urban environmental change drives parallel evolution by sampling 110,019 white clover plants from 6169 populations in 160 cities globally. Plants were assayed for a Mendelian antiherbivore defense that also affects tolerance to abiotic stressors. Urban-rural gradients were associated with the evolution of clines in defense in 47% of cities throughout the world. Variation in the strength of clines was explained by environmental changes in drought stress and vegetation cover that varied among cities. Sequencing 2074 genomes from 26 cities revealed that the evolution of urban-rural clines was best explained by adaptive evolution, but the degree of parallel adaptation varied among cities. Our results demonstrate that urbanization leads to adaptation at a global scale
    corecore