45 research outputs found

    Nearing Extremal Intersecting Giants and New Decoupled Sectors in N = 4 SYM

    Full text link
    We study near-horizon limits of near-extremal charged black hole solutions to five-dimensional U(1)3U(1)^3 gauged supergravity carrying two charges, extending the recent work of Balasubramanian et.al. We show that there are two near-horizon decoupling limits for the near-extremal black holes, one corresponding to the near-BPS case and the other for the far from BPS case. Both of these limits are only defined on the 10d IIB uplift of the 5d black holes, resulting in a decoupled geometry with a six-dimensional part (conformal to) a rotating BTZ X S3S^3. We study various aspects of these decoupling limits both from the gravity side and the dual field theory side. For the latter we argue that there should be two different, but equivalent, dual gauge theory descriptions, one in terms of the 2d CFT's dual to the rotating BTZ and the other as certain large R-charge sectors of d=4,N =4 U(N) SYM theory. We discuss new BMN-type sectors of the N=4 SYM in the NN\to\infty limit in which the engineering dimensions scale as N3/2N^{3/2} (for the near-BPS case) and as N2N^2 (for the far from BPS case).Comment: 44 pages, references added, minor change

    EVH Black Holes, AdS3 Throats and EVH/CFT Proposal

    Full text link
    Within class of generic black holes there are extremal black holes (with vanishing Hawking temperature T) and vanishing horizon area Ah, but with finite Ah/T ratio,the Extremal Vanishing Horizon (EVH) black holes. We study the near horizon limit of a four dimensional EVH black hole solution to a generic (gauged) Einstein-Maxwell dilaton theory and show that in the near horizon limit they develop a throat which is a pinching orbifold limit of AdS3. This is an extension of the well known result for extremal black holes the near horizon limit of which contains an AdS2 throat. We show that in the near EVH near horizon limit the pinching AdS3 factor turns to a pinching BTZ black hole and that this near horizon limit is indeed a decoupling limit. We argue that the pinching AdS3 or BTZ orbifold is resolved if the near horizon limit is accompanied by taking the 4d Newton constant G4 to zero such that the Bekenstein-Hawking entropy S = Ah/(4G4) remains finite. We propose that in this limit the near horizon EVH black hole is dual to a 2d CFT. We provide pieces of evidence in support of the EVH/CFT correspondence and comment on its connection to the Kerr/CFT proposal and speculations how the EVH/CFT may be used to study generic e.g. Schwarzchild-type black holes.Comment: 31 pages, 3 figures, JHEP styl

    Near Horizon Limits of Massless BTZ and Their CFT Duals

    Get PDF
    We consider the massless BTZ black hole and show that it is possible to take its "near horizon" limit in two distinct ways. The first one leads to a null self-dual orbifold of AdS3 and the second to a spacelike singular AdS3/Z_K orbifold in the large K limit, the "pinching orbifold". We show that from the dual 2d CFT viewpoint, the null orbifold corresponds to the p^+=0 sector of the Discrete Light-Cone Quantisation (DLCQ) of the 2d CFT where a chiral sector of the CFT is decoupled, while the pinching orbifold corresponds to taking an infinite mass gap limit in both the right and left sectors of the 2d CFT, essentially leaving us with the states L_0=\bar L_0=c/24 only. In the latter case, one can combine the near horizon limit with sending the 3d Planck length l_P to zero, or equivalently the dual CFT central charge c to infinity. We provide preliminary evidence that in that case some nontrivial dynamics may survive the limit.Comment: 22 pages, no figures, v2: minor improvements, references adde

    Entropy of near-extremal black holes in AdS_5

    Get PDF
    We construct the microstates of near-extremal black holes in AdS_5 x S^5 as gases of defects distributed in heavy BPS operators in the dual SU(N) Yang-Mills theory. These defects describe open strings on spherical D3-branes in the S^5, and we show that they dominate the entropy by directly enumerating them and comparing the results with a partition sum calculation. We display new decoupling limits in which the field theory of the lightest open strings on the D-branes becomes dual to a near-horizon region of the black hole geometry. In the single-charge black hole we find evidence for an infrared duality between SU(N) Yang-Mills theories that exchanges the rank of the gauge group with an R-charge. In the two-charge case (where pairs of branes intersect on a line), the decoupled geometry includes an AdS_3 factor with a two-dimensional CFT dual. The degeneracy in this CFT accounts for the black hole entropy. In the three-charge case (where triples of branes intersect at a point), the decoupled geometry contains an AdS_2 factor. Below a certain critical mass, the two-charge system displays solutions with naked timelike singularities even though they do not violate a BPS bound. We suggest a string theoretic resolution of these singularities.Comment: LaTeX; v2: references and a few additional comments adde

    Surprisingly Simple Spectra

    Full text link
    The large N limit of the anomalous dimensions of operators in N=4{\cal N}=4 super Yang-Mills theory described by restricted Schur polynomials, are studied. We focus on operators labeled by Young diagrams that have two columns (both long) so that the classical dimension of these operators is O(N). At large N these two column operators mix with each other but are decoupled from operators with n2n\ne 2 columns. The planar approximation does not capture the large N dynamics. For operators built with 2, 3 or 4 impurities the dilatation operator is explicitly evaluated. In all three cases, in a certain limit, the dilatation operator is a lattice version of a second derivative, with the lattice emerging from the Young diagram itself. The one loop dilatation operator is diagonalized numerically. All eigenvalues are an integer multiple of 8gYM28g_{YM}^2 and there are interesting degeneracies in the spectrum. The spectrum we obtain for the one loop anomalous dimension operator is reproduced by a collection of harmonic oscillators. This equivalence to harmonic oscillators generalizes giant graviton results known for the BPS sector and further implies that the Hamiltonian defined by the one loop large NN dilatation operator is integrable. This is an example of an integrable dilatation operator, obtained by summing both planar and non-planar diagrams.Comment: 34 page

    On Non-Chiral Extension of Kerr/CFT

    Full text link
    We discuss possible non-chiral extension of the Kerr/CFT correspondence. We first consider the near horizon geometry of an extremal BTZ black hole and study the asymptotic symmetry. In order to define it properly, we introduce a regularization and show that the asymptotic symmetry becomes the desirable non-chiral Virasoro symmetry with the same central charges for both left and right sectors, which are independent of the regularization parameter. We then investigate the non-chiral extension for general extremal black holes in the zero entropy limit. Since the same geometric structure as above emerges in this limit, we identify non-chiral Virasoro symmetry by a similar procedure. This observation supports the existence of a hidden non-chiral CFT_2 structure with the same central charges for both left and right sectors dual to the rotating black holes.Comment: 29 pages, LaTeX; v2: minor corrections, references adde

    New Near Horizon Limit in Kerr/CFT

    Full text link
    The extremal Kerr black hole with the angular momentum J is conjectured to be dual to CFT with central charges c_L=c_R=12J. However, the central charge in the right sector remains to be explicitly derived so far. In order to investigate this issue, we introduce new near horizon limits of (near) extremal Kerr and five-dimensional Myers-Perry black holes. We obtain Virasoro algebras as asymptotic symmetries and calculate the central charges associated with them. One of them is equivalent to that of the previous studies, and the other is non-zero, but still the order of near extremal parameter. Redefining the algebras to take the standard form, we obtain a finite value as expected by the Kerr/CFT correspondence.Comment: 25 pages, minor changes, references adde

    Degenerate Rotating Black Holes, Chiral CFTs and Fermi Surfaces I - Analytic Results for Quasinormal Modes

    Full text link
    In this work we discuss charged rotating black holes in AdS5×S5AdS_5 \times S^5 that degenerate to extremal black holes with zero entropy. These black holes have scaling properties between charge and angular momentum similar to those of Fermi surface operators in a subsector of N=4\mathcal{N}=4 SYM. We add a massless uncharged scalar to the five dimensional supergravity theory, such that it still forms a consistent truncation of the type IIB ten dimensional supergravity and analyze its quasinormal modes. Separating the equation of motion to a radial and angular part, we proceed to solve the radial equation using the asymptotic matching expansion method applied to a Heun equation with two nearby singularities. We use the continued fraction method for the angular Heun equation and obtain numerical results for the quasinormal modes. In the case of the supersymmetric black hole we present some analytic results for the decay rates of the scalar perturbations. The spectrum of quasinormal modes obtained is similar to that of a chiral 1+1 CFT, which is consistent with the conjectured field-theoretic dual. In addition, some of the modes can be found analytically.Comment: 41 pages, 1 figure, LaTeX; v2: typos corrected, references adde
    corecore