6 research outputs found

    Novel DNA variation of GPR54 gene in familial central precocious puberty

    No full text
    Abstract Background Puberty can be considered the end point of a maturation process which is defined by the dynamic interactions of genes and environmental factors during prenatal and postnatal development. Kisspeptin/G protein-coupled receptor-54, is as an essential gatekeeper and regulator of GnRH neurons, and a key factor in initiation of puberty. Loss and gain of functional mutations in the GPR54 gene are associated with hypogonadotropic hypogonadism and precocious puberty, respectively. This study was designed to evaluate variations of GPR54 in familial precocious puberty. Methods Genomic DNA was extracted from peripheral whole blood of 25 subjects with familial precocious puberty. Coding exons 1–5 of the GPR54 gene were amplified by polymerase chain reaction (PCR) and the PCR products were purified and sequenced. DNA sequences were compared to the human GenBank GPR54 sequence using Sequencher sequence alignment software. Results We detected three different Single Nucleotide Polymorphisms (SNPs) in GPR54: rs10407968 (24A > T) in 13 subjects (52%); rs3050132 (1091 T > A) in 16 subjects (64%), and a novel polymorphism (492C > G) in one subject (4%), while three subjects (12%) had no SNPs. No mutations were found in the GPR54 gene. Conclusions Regarding the presence of SNPs in 88% of the subjects in this study, it is likely a relationship exists between the SNPs of the GPR54 gene and familial precocious puberty. Further research is needed to investigate this possibility, and potential functional effects of these polymorphisms

    Preclinical tumor mouse models for studying esophageal cancer

    No full text
    Preclinical models are extensively employed in cancer research because they can be manipulated in terms of their environment, genome, molecular biology, organ systems, and physical activity to mimic human behavior and conditions. The progress made in in vivo cancer research has resulted in significant advancements, enabling the creation of spontaneous, metastatic, and humanized mouse models. Most recently, the remarkable and extensive developments in genetic engineering, particularly the utilization of CRISPR/Cas9, transposable elements, epigenome modifications, and liquid biopsies, have further facilitated the design and development of numerous mouse models for studying cancer. In this review, we have elucidated the production and usage of current mouse models, such as xenografts, chemical-induced models, and genetically engineered mouse models (GEMMs), for studying esophageal cancer. Additionally, we have briefly discussed various gene-editing tools that could potentially be employed in the future to create mouse models specifically for esophageal cancer research.</p
    corecore