224 research outputs found

    Recurrent Non-Hodgkin’s lymphoma in the uterine cervix: a case report and a review of the literature

    Get PDF
    Background. Lymphomas are a heterogeneous group of malignant lymphoproliferative diseases. As primary localization, the most common histological subtype of female genital lymphomas is a Non-Hodgkin Lymphoma (NHL), the diffuse large B-cell type. However cervical relapse of NHL is a very rare condition (0.3%). Case presentation. A 42-year-old Peruvian woman experienced relapse of NHL with uterine localization. She complained at first of abnormal vaginal bleeding and stranguria. The cervical biopsy performed showed a diffuse large B-cell lymphoma in the uterine cervix. The lack of clinical studies on this topic and its rarity make this type of recurrence very difficult to treat. Conclusions. In case of a woman with vaginal bleeding and history of NHL, a disease relapse should always be considered, and a biopsy should be performed to confirm the diagnosis. © 2023, EDRA S.p.A. All rights reserved

    Superscaling and Neutral Current Quasielastic Neutrino-Nucleus Scattering beyond the Relativistic Fermi Gas Model

    Get PDF
    The superscaling analysis is extended to include quasielastic (QE) scattering via the weak neutral current of neutrinos and antineutrinos from nuclei. The scaling function obtained within the coherent density fluctuation model (used previously in calculations of QE inclusive electron and charge-changing (CC) neutrino scattering) is applied to neutral current neutrino and antineutrino scattering with energies of 1 GeV from 12^{12}C with a proton and neutron knockout (u-channel inclusive processes). The results are compared with those obtained using the scaling function from the relativistic Fermi gas model and the scaling function as determined from the superscaling analysis (SuSA) of QE electron scattering.Comment: 10 pages, 6 figures, published in Phys. Rev.

    Head-shaking nystagmus in the early stage of unilateral meniere’s disease

    Get PDF
    OBJECTIVES: The aim of the present study was to evaluate the ability of head-shaking nystagmus (HSNy), evoked after the resolution of a vertigo spell, to predict an imminent crisis in the early stage of Meniere’s disease (MD). MATERIALS and METHODS: A total of 20 patients in the early stage of MD were included in the study. The head-shaking test (HST) was performed twice, during the first visit within 24 h of vertigo spell (T0) and 48 h later (T1). The onset of a new vertigo episode during the 2 weeks following the first visit was recorded in each patient’s medical record. The sensitivity and specificity of HSNy toward predicting a new vertigo episode were calculated. RESULTS: At T0, an evoked ipsilesional HSNy in 15 (75%) patients was observed; in four of them, the HSNy had a biphasic component. The HSNy was present and persistent at T1 in 8 (42.1%) patients; among these cases, 6 patients had ipsilesional HSNy, and 2 patients a contralesional HSNy. None of the patients presented with a biphasic HSNy at T1. Seven (36.8%) patients experienced the recurrence of a vertigo crisis. Among these, 6 patients had ipsilesional HSNy at T1. Only 8 patients with ipsilesional HSNy at T0 did not have recurrence. The sensitivity of the ipsilesional HSNy in predicting the recurrence of vertigo in patients with MD was 100% at T0 and 85.7% at T1. The specificity was 46.6% and 100% at T0 and T1, respectively. CONCLUSION: The HST can be a useful test in the early stages of MD to predict a new vertigo attack

    Superscaling in dilute Fermi gas and its relation to general properties of the nucleon momentum distribution in nuclei

    Get PDF
    The superscaling observed in inclusive electron scattering is described within the dilute Fermi gas model with interaction between the particles. The comparison with the relativistic Fermi gas (RFG) model without interaction shows an improvement in the explanation of the scaling function f(ψ′)f(\psi ') in the region ψ′<−1\psi ' < -1, where the RFG result is f(ψ′)=0f(\psi ') = 0. It is found that the behavior of f(ψ′)f(\psi ') for ψ′<−1\psi ' < -1 depends on the particular form of the general power-law asymptotics of the momentum distribution n(k)∼1/k4+mn(k)\sim 1/ k^{4+m} at large kk. The best agreement with the empirical scaling function is found for m≃4.5m\simeq 4.5 in agreement with the asymptotics of n(k)n(k) in the coherent density fluctuation model where m=4m = 4. Thus, superscaling gives information about the asymptotics of n(k)n(k) and the NN forces.Comment: 6 pages, 5 figures, accepted for publication in Physical Review

    Ultracompact microinterferometer-based fiber Bragg grating interrogator on a silicon chip

    Get PDF
    We report an interferometer-based multiplexed fiber Bragg grating (FBG) interrogator using silicon photonic technology. The photonic-integrated system includes the grating coupler, active and passive interferometers, interferometers, a 12-channel wavelength-division-multiplexing (WDM) filter, and Ge photodiodes, all integrated on a 6x8&nbsp;mm2 silicon chip. The system also includes optical and electric interfaces to a printed board, which is connected to a real-time electronic board that actively performs the phase demodulation processing using a multitone mixing (MTM) technique. The device with active demodulation, which uses thermally-based phase shifters, features a noise figure of σ&nbsp; = &nbsp;0.13&nbsp;pm at a bandwidth of 700&nbsp;Hz, which corresponds to a dynamic spectral resolution of 4.9&nbsp;fm/Hz1/2. On the other hand, the passive version of the system, based on a 90º-hybrid coupler, features a noise figure of σ&nbsp; = &nbsp;2.55&nbsp;pm at a bandwidth of 10&nbsp;kHz, also showing successful detection of a 42&nbsp;kHz signal when setting the bandwidth to 50&nbsp;kHz. These results demonstrate the advantage of integrated photonics, which allows the integration of several systems with different demodulation schemes in the same chip and guarantees easy scalability to a higher number of ports without increasing the dimensions or the cost

    Effect of in-water oxygen prebreathing at different depths on decompression-induced bubble formation and platelet activation

    Get PDF
    Effect of in-water oxygen prebreathing at different depths on decompression-induced bubble formation and platelet activation in scuba divers was evaluated. Six volunteers participated in four diving protocols, with 2 wk of recovery between dives. On dive 1, before diving, all divers breathed normally for 20 min at the surface of the sea (Air). On dive 2, before diving, all divers breathed 100% oxygen for 20 min at the surface of the sea [normobaric oxygenation (NBO)]. On dive 3, before diving, all divers breathed 100% O2 for 20 min at 6 m of seawater [msw; hyperbaric oxygenation (HBO) 1.6 atmospheres absolute (ATA)]. On dive 4, before diving, all divers breathed 100% O2 for 20 min at 12 msw (HBO 2.2 ATA). Then they dove to 30 msw (4 ATA) for 20 min breathing air from scuba. After each dive, blood samples were collected as soon as the divers surfaced. Bubbles were measured at 20 and 50 min after decompression and converted to bubble count estimate (BCE) and numeric bubble grade (NBG). BCE and NBG were significantly lower in NBO than in Air [0.142+/-0.034 vs. 0.191+/-0.066 (P&lt;0.05) and 1.61+/-0.25 vs. 1.89+/-0.31 (P&lt;0.05), respectively] at 20 min, but not at 50 min. HBO at 1.6 ATA and 2.2 ATA has a similar significant effect of reducing BCE and NBG. BCE was 0.067+/-0.026 and 0.040+/-0.018 at 20 min and 0.030+/-0.022 and 0.020+/-0.020 at 50 min. NBG was 1.11+/-0.17 and 0.92+/-0.16 at 20 min and 0.83+/-0.18 and 0.75+/-0.16 at 50 min. Prebreathing NBO and HBO significantly alleviated decompression-induced platelet activation. Activation of CD62p was 3.0+/-0.4, 13.5+/-1.3, 10.7+/-0.9, 4.5+/-0.7, and 7.6+/-0.8% for baseline, Air, NBO, HBO at 1.6 ATA, and HBO at 2.2 ATA, respectively. The data show that prebreathing oxygen, more effective with HBO than NBO, decreases air bubbles and platelet activation and, therefore, may be beneficial in reducing the development of decompression sickness

    Superscaling and Charge-Changing Neutrino Scattering from Nuclei in the Δ\boldsymbol \Delta-Region beyond the Relativistic Fermi Gas Model

    Get PDF
    The superscaling analysis using the scaling function obtained within the coherent density fluctuation model is extended to calculate charge-changing neutrino and antineutrino scattering on 12^{12}C at energies from 1 to 2 GeV not only in the quasielastic but also in the delta excitation region. The results are compared with those obtained using the scaling functions from the relativistic Fermi gas model and from the superscaling analysis of inclusive scattering of electrons from nuclei.Comment: 9 pages, 8 figures, accepted for publication in Physical Review

    Relativistic Structure of the Deuteron: 1.Electro-disintegration and y-scaling

    Get PDF
    Realistic solutions of the spinor-spinor Bethe-Salpeter equation for the deuteron with realistic interaction kernel including the exchange of pi, sigma, omega, rho, eta and delta mesons, are used to systematically investigate relativistic effects in inclusive quasi-elastic electron-deuteron scattering within the relativistic impulse approximation. Relativistic y-scaling is considered by generalising the non relativistic scaling function to the relativistic case, and it is shown that y-scaling does occur in the usual relativistic scaling variable resulting from the energy conservation in the instant form of dynamics. The present approach of y-scaling is fully covariant, with the deuteron being described by eight components, viz. the 3S_1^{++}, 3S_1^{--}, 3D_1^{++}, 3D_1^{--}, 3P_1^{+-}, 3P_1^{-+}, 1P_1^{+-}, 1P_1^{-+} waves. It is demonstrated that if the negative relative energy states 1P_1, 3P_1 are disregarded, the concept of covariant momentum distributions N(p_0,p), with p_0=M_D/2-\sqrt{p^2+m^2}, can be introduced, and that calculations of lectro-disintegration cross section in terms of these distributions agree within few percents with the exact calculations which include the 1P_1, 3P_1 states, provided the nucleon three momentum |p|\<= 1 GeV/c; in this momentum range, the asymptotic relativistic scaling function is shown to coincide with the longitudinal covariant momentum distribution.Comment: 32 LaTeX pages, 18 eps-figures. Final version to appear in Phys. Rev.

    Distributed temperature sensor system based on Raman scattering using correlation-codes

    Get PDF
    A distributed sensor system employing spontaneous Raman scattering with use of correlation-coding techniques and a single-detector scheme is discussed and experimentally characterised. A sensing distance of up to 8 km is achieved with high spatial and temperature resolutions; use of correlation-coding significantly reduces measurement time and allows use of low-power laser sources
    • …
    corecore