26 research outputs found

    Effectiveness and Cost of Insecticide-Treated Bed Nets and Indoor Residual Spraying for the Control of Cutaneous Leishmaniasis: A Cluster-Randomized Control Trial in Morocco.

    Get PDF
    Cutaneous leishmaniasis (CL) remains an important public health problem in Morocco. A cluster-randomized trial was conducted with the following three study arms: 1) long-lasting insecticide-treated nets (LLINs) plus standard of care environmental management (SoC-EM), 2) indoor residual spraying (IRS) with α-cypermethrin plus SoC-EM, and 3) SoC-EM alone. Incidence of new CL cases by passive and active case detection, sandfly abundance, and cost and cost-effectiveness was compared between study arms over 5 years. Incidence of CL and sandfly abundance were significantly lower in the IRS arm compared with SoC-EM (CL incidence rate ratio = 0.32, 95% confidence interval [CI] = 0.15-0.69, P = 0.005 and sandfly abundance ratio = 0.39, 95% CI = 0.18-0.85, P = 0.022). Reductions in the LLIN arm of the study were not significant, possibly due to poor compliance. IRS was effective and more cost-effective for the prevention of CL in Morocco

    Insecticide susceptibility status of Phlebotomus (Paraphlebotomus) sergenti and Phlebotomus (Phlebotomus) papatasi in endemic foci of cutaneous leishmaniasis in Morocco

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In Morocco, cutaneous leishmaniasis is transmitted by <it>Phlebotomus sergenti </it>and <it>Ph. papatasi</it>. Vector control is mainly based on environmental management but indoor residual spraying with synthetic pyrethroids is applied in many foci of <it>Leishmania tropica</it>. However, the levels and distribution of sandfly susceptibility to insecticides currently used has not been studied yet. Hence, this study was undertaken to establish the susceptibility status of <it>Ph. sergenti </it>and <it>Ph. papatasi </it>to lambdacyhalothrin, DDT and malathion.</p> <p>Methods</p> <p>The insecticide susceptibility status of <it>Ph. sergenti </it>and <it>Ph. papatasi </it>was assessed during 2011, following the standard WHO technique based on discriminating dosage. A series of twenty-five susceptibility tests were carried out on wild populations of <it>Ph. sergenti </it>and <it>Ph. papatasi </it>collected by CDC light traps from seven villages in six different provinces. Knockdown rates (KDT) were noted at 5 min intervals during the exposure to DDT and to lambdacyhalothrin. After one hour of exposure, sandflies were transferred to the observation tubes for 24 hours. After this period, mortality rate was calculated. Data were analyzed by Probit analysis program to determine the knockdown time 50% and 90% (KDT50 and KDT90) values.</p> <p>Results</p> <p>Study results showed that <it>Ph.sergenti </it>and <it>Ph. papatasi </it>were susceptible to all insecticides tested. Comparison of KDT values showed a clear difference between the insecticide knockdown effect in studied villages. This effect was lower in areas subject to high selective public health insecticide pressure in the framework of malaria or leishmaniasis control.</p> <p>Conclusion</p> <p><it>Phlebotomus sergenti </it>and <it>Ph. papatasi </it>are susceptible to the insecticides tested in the seven studied villages but they showed a low knockdown effect in Azilal, Chichaoua and Settat. Therefore, a study of insecticide susceptibility of these vectors in other foci of leishmaniasis is recommended and the level of their susceptibility should be regularly monitored.</p

    Seasonal Changes of sandflies: A study of the Endemic Outbreak of Leishmania Major in Zagora, Southeast Morocco

    No full text
    Leishmaniasis is endemic in the province of Zagora and presents a real danger to the health situation. It is manifested by endemic morbidity. The objective of this study is to assist in vector control measures by providing information on the richness, abundance, seasonal trend, presence and sex ratio of sand fly species in this active epidemic. The study was conducted in Bleida locality in the province of Zagora, during an outbreak of L. major. The results of this study, undertaken in 2019, showed the predominance of Ph. papatasi (44.8%), followed by Ph. longicuspis (26.3%) and S.schwetzi(8.2%).The analysis supports the involvement of P. papatasi as a vector of L. major in Bleida locality. which indicates the increase of cutaneous leishmania in the province of Zagora

    Diversity and Bionomics of Sandflies (Diptera: Psychodidae) of an Endemic Focus of Cutaneous Leishmaniasis in Zagora Province, Southeast of Morocco

    No full text
    The diversity and seasonality for sandflies were studied in 2019 at a focus of zoonotic cutaneous leishmaniasis in Zagora province, southern Morocco. Standardized sampling with CDC light traps was used. A total of 4504 sandflies (4024 Phlebotomus and 480 Sergentomyia) was collected during the study period. Seven species belonging to genus Phlebotomus and six species of genus Sergentomyia were identified. The most abundant species were Ph. papatasi (33.6%) and Ph. longicuspis (25.7%), highlighting the risk for local disease transmission foci. The seasonal activity of sandflies extended from April to November, showing two peaks, one in June-July and one, less important, in late-September-October. Abundance was highest during the months May, June, and July and lowest in August, September, and October. Results of this study provide important baseline data for planning control interventions

    Study of Abiotic and Biotic Parameters Affecting the Abundance of Mosquito Larvae (Diptera: Culicidae) in the Region of Fez (Morocco)

    No full text
    Mosquitoes cause significant human health issues. However, very few studies have attempted to examine the question of how abiotic and biotic factors affect the abundance of Culicidae in the larval habitat. The objective of this study was to analyze the influence of biotic and abiotic factors on the increase of the most common mosquito species in the Fez region (Central Morocco). Larvae mosquitoes were sampled by standard dipping technique in four different types of macrohabitats, between November 2015 and November 2016. Each mosquito specimen was morphologically identified by the Moroccan Culicidae key and the Brunhes key. The analysis was done using R analysis software. We collected a total of 772 mosquito larvae belonging to nine different species, five of which are considered of medical interest. Culex pipiens (Linnaeus, 1758), known as the major vector in the transmission of West Nile virus fever (WNV), was the most common species of all mosquito larvae collected. The results of Poisson regression analysis showed that factors such as the presence of green filamentous algae, vegetation cover, and debris were found to be positively significant in the distribution of the genus Culex. However, there was insufficient evidence to determine the parameters that are capable of estimating the abundance of Anopheles. The findings have also estimated that biotic and abiotic factors can lead to significant variation in the abundance of Culex perexiguus (Theobald, 1903), Culex theileri (Theobald, 1903), and Culex pipiens (Linnaeus, 1758). Identifying the priority parameters governing the proliferation of mosquitoes in the region of Fez can be one of the key elements for better vector control

    First report of L1014F-kdr mutation in Culex pipiens complex from Morocco.

    Get PDF
    International audienceBackgroundMosquitoes of the Culex pipiens complex, competent vectors for West Nile virus (WNV) and Rift Valley fever virus (RVFV) are widely targeted by insecticide treatments. The intensive application of chemical insecticides led to the development of resistance in many insects including Culex pipiens mosquitoes. The absence of data on resistance mechanisms in Morocco allow us to assess the levels of lambda-cyhalothrin resistance and the frequency of the mutated gene L1014F kdr in different forms of Cx. pipiens complex from three regions of Morocco.MethodsMosquito adults were reared from immature stages collected in three different regions in Morocco (Tangier, Casablanca and Marrakech). Standard WHO insecticide susceptibility tests were conducted on adults emerged from collected larvae. Specimens were identified as belonging to the Culex pipiens complex using a multiplex PCR assay with diagnostic primers designed from the flanking region of microsatellite CQ11. Identified mosquitoes were then tested for the presence of the L1014F kdr mutation using PCR assay.ResultsOur results showed that 21% of the tested population has a resistance to lambda-cyhalothrin. The molecular identification of survivors shows that 43% belonged to the Cx. pipiens pipiens and only 9.5% to the Cx. pipiens molestus form. On the other hand, 416 specimens were screened for the L1014F kdr mutation. L1014F mutation was detected in different forms of Cx. pipiens in different sites. The frequency of L1014F mutation was similar between the Cx. pipiens pipiens form and hybrid form, while it was lower in the Cx. pipiens molestus form. The presence of the L1014F kdr allele was significantly associated with resistance to lambda-cyhalothrin in Cx. pipiens pipiens (P < 0.0001) and hybrid form (P < 0.0001).ConclusionResistance to lambda-cyhalothrin of Cx. pipiens populations appears to be largely due to the L1014F kdr mutation. To our knowledge, the frequencies of L1014F kdr mutation are examined for the first time in natural populations of the Culex pipiens complex in Morocco. These findings will provide important information to propose more adapted vector control measures towards this mosquito species, potential vector of arboviruses

    Insecticide resistance and target site mutations (G119S ace-1 and L1014F kdr) of Culex pipiens in Morocco

    No full text
    International audienceBackground: Control of the mosquito vector Culex pipiens with insecticides is the main way to control arboviruses that the species can transmit such as West Nile virus (WNV) and Rift Valley fever virus (RVFV). However, its efficiency has been hampered by the emergence of insecticide resistance. Little is known about the insecticide-resistance status and underlying resistance mechanisms of field-collected populations of Cx. pipiens in Morocco.Methods : Mosquito adults from Mohammadia city in Morocco were reared from immature stages. The level of their susceptibility to insecticides was assessed using standard WHO bioassay. The two forms of the Cx. pipiens complex and their hybrids were identified by a multiplex PCR. Identified mosquitoes were then tested for the presence of the G119S ace-1 and L1014F kdr mutations using PCR-RFLP and PCR assays, respectively.Results : WHO bioassays indicated that Cx. pipiens was resistant to all tested insecticides: lambda-cyhalothrin (49% mortality), permethrin (63% mortality), DDT (16% mortality), malation (52% mortality) and bendiocarb (39% mortality). The frequency of the 119S allele was almost identical in the pipiens form and hybrids (0.11 and 0.15, respectively) whereas it remained low in the molestus form (0.03). No significant correlation was observed between the G119S allele and the resistance phenotype to two tested insecticides (malathion and bendiocarb). The frequency of the L1014F allele was identical in the pipiens form and hybrids (0.44) whereas it was low in the molestus form (0.36) but no significant difference was detected (χ2 = 1.46, df = 1, P = 0.225). The presence of the L1014F kdr mutation was significantly associated with resistance to three tested insecticides in pipiens form (P = 0.0019, P = 0.0023 and P = 0.023, respectively, to lambda-cyhalothrin, permethrin and DDT) whereas no significant correlation was observed between the L1014F kdr mutation and resistance phenotype in molestus form and hybrids to the three tested insecticides.Conclusion : These findings showed that wild populations of Cx. pipiens have developed resistance against the main insecticide families with different modes of action: organochlorines (DDT), organophosphates (malathion), carbamates (bendiocarb), pyrethroids (lambda-cyhalothrin, permethrin). Therefore, urgent action should be taken to manage the resistance in this species to maintain the effectiveness of arbovirus control
    corecore