17 research outputs found

    Single-nucleotide polymorphism-based genetic risk score and patient age at prostate cancer diagnosis

    Get PDF
    Importance: Few studies have evaluated the association between a single-nucleotide polymorphism-based genetic risk score (GRS) and patient age at prostate cancer (PCa) diagnosis. Objectives: To test the association between a GRS and patient age at PCa diagnosis and to compare the performance of a GRS with that of family history (FH) in PCa risk stratification. Design, Setting, and Participants: A cohort study of 3225 white men was conducted as a secondary analysis of the Reduction by Dutasteride of Prostate Cancer Events (REDUCE) chemoprevention trial, a 4-year, randomized, double-blind, placebo-controlled multicenter study conducted from March 2003 to April 2009 to evaluate the safety and efficacy of dutasteride in reducing PCa events. Participants were confirmed to be cancer free by prostate biopsy (6-12 cores) within 6 months prior to the study and underwent 10 core biopsies every 2 years per protocol. The dates for performing data analysis were from July 2016 to October 2019. Interventions: A well-established, population-standardized GRS was calculated for each participant based on 110 known PCa risk-associated single-nucleotide polymorphisms, which is a relative risk compared with the general population. Men were classified into 3 GRS risk groups based on predetermined cutoff values: low (\u3c0.50), average (0.50-1.49), and high (≥1.50). Main Outcomes and Measures: Prostate cancer diagnosis-free survival among men of different risk groups. Results: Among 3225 men (median age, 63 years [interquartile range, 58-67 years]) in the study, 683 (21%) were classified as low risk, 1937 (60%) as average risk, and 605 (19%) as high risk based on GRS alone. In comparison, 2789 (86%) were classified as low or average risk and 436 (14%) as high risk based on FH alone. Men in higher GRS risk groups had a PCa diagnosis-free survival rate that was worse than that of those in the lower GRS risk group (χ2 = 53.3; P \u3c .001 for trend) and in participants with a negative FH of PCa (χ2 = 45.5; P \u3c .001 for trend). Combining GRS and FH further stratified overall genetic risk, indicating that 957 men (30%) were at high genetic risk (either high GRS or positive FH), 1667 men (52%) were at average genetic risk (average GRS and negative FH), and 601 men (19%) were at low genetic risk (low GRS and negative FH). The median PCa diagnosis-free survival was 74 years (95% CI, 73-75 years) for men at high genetic risk, 77 years (95% CI, 75 to \u3e80 years) for men at average genetic risk, and more than 80 years (95% CI, \u3e80 to \u3e80 years) for men at low genetic risk. In contrast, the median PCa diagnosis-free survival was 73 years (95% CI, 71-76 years) for men with a positive FH and 77 years (95% CI, 76-79 years) for men with a negative FH. Conclusions and Relevance: This study suggests that a GRS is significantly associated with patient age at PCa diagnosis. Combining FH and GRS may better stratify inherited risk than FH alone for developing personalized PCa screening strategies

    Metformin treatment in diabetes and heart failure: when academic equipoise meets clinical reality

    Get PDF
    <p>Abstract</p> <p>Objective</p> <p>Metformin has had a 'black box' contraindication in diabetic patients with heart failure (HF), but many believe it to be the treatment of choice in this setting. Therefore, we attempted to conduct a pilot study to evaluate the feasibility of undertaking a large randomized controlled trial with clinical endpoints.</p> <p>Study Design</p> <p>The pilot study was a randomized double blinded placebo controlled trial. Patients with HF and type 2 diabetes were screened in hospitals and HF clinics in Edmonton, Alberta, Canada (population ~1 million). Major exclusion criteria included the current use of insulin or high dose metformin, decreased renal function, or a glycosylated hemoglobin <7%. Patients were to be randomized to 1500 mg of metformin daily or matching placebo and followed for 6 months for a variety of functional outcomes, as well as clinical events.</p> <p>Results</p> <p>Fifty-eight patients were screened over a six month period and all were excluded. Because of futility with respect to enrollment, the pilot study was abandoned. The mean age of screened patients was 77 (SD 9) years and 57% were male. The main reasons for exclusion were: use of insulin therapy (n = 23; 40%), glycosylated hemoglobin <7% (n = 17; 29%) and current use of high dose metformin (n = 12; 21%). Overall, contraindicated metformin therapy was the most commonly prescribed oral antihyperglycemic agent (n = 27; 51%). On average, patients were receiving 1,706 mg (SD 488 mg) of metformin daily and 12 (44%) used only metformin.</p> <p>Conclusion</p> <p>Despite uncertainty in the scientific literature, there does not appear to be clinical uncertainty with regards to the safety or effectiveness of metformin in HF making a definitive randomized trial virtually impossible.</p> <p>Trial registration</p> <p>ClinicalTrials.gov Identifier: NCT00325910</p

    NTDB data points: For whom the bel tolls?

    No full text

    AUTHOR REPLY

    No full text

    Serum Total Testosterone and Premature Mortality Among Men in the USA

    No full text
    The relationship between testosterone and premature mortality has caused recent controversy. While previous studies have demonstrated mixed results, this is partly because of variable patient populations, different testosterone thresholds, and the use of antiquated techniques to measure serum testosterone. Using the National Health and Nutrition Examination Survey we analyzed a cohort representative of men in the USA to explore the relationship between serum testosterone and premature mortality using contemporary guidelines and testosterone measurements. We found that men with low testosterone (<300 ng/dl) were at higher risk (odds ratio 2.07, 95% confidence interval 1.30–3.32; p < 0.01) of premature death compared to men with normal testosterone. Furthermore, men with low testosterone were also more likely to have treatable comorbid conditions that were independently predictive of premature mortality. Both testosterone and these comorbid conditions are also modulated by lifestyle modifications, rendering this an important therapeutic approach in men with either or both conditions. Patient summary: We explored the relationship between testosterone levels and premature death in a large US population. We found that low testosterone is associated with both premature death and related disease processes such as obesity, both of which can be initially treated with diet and exercise

    Elevated testosterone on immunoassay in a patient with metastatic prostate cancer following androgen deprivation therapy and bilateral orchiectomy

    No full text
    We present the case of an 83-year-old man with metastatic prostate cancer who had testosterone levels reading above castration range despite appropriate medical and surgical castration. Mass spectrometry was performed to confirm presence of testosterone, but no testosterone was detected. The elevated testosterone as measured by standard immunoassay was postulated to be secondary to heterophile antibodies in the patient's serum. This report highlights the need for a high index of suspicion for interference in testosterone immunoassays when levels remain mildly elevated. Mass spectrometry may provide a more reliable method by which to detect testosterone concentration prior to escalation of care

    Genetic Susceptibility for Low Testosterone in Men and Its Implications in Biology and Screening: Data from the UK Biobank

    No full text
    Background: Despite strong evidence of heritability, few studies have attempted to unveil the genetic underpinnings of testosterone levels. Objective: To identify testosterone-associated loci in a large study and assess their biological and clinical implications. Design, setting, and participants: The participants were men from the UK Biobank. A two-stage genome-wide association study (GWAS) was first used to identify/validate loci for low testosterone (LowT, <8 nmol/l) in 80% of men (N = 148 902). The cumulative effect of independent LowT risk loci was then evaluated in the remaining 20% of men. Outcome measurements and statistical analysis: Associations of single nucleotide polymorphisms (SNPs) with LowT were tested using an additive model. Analyses of the expression quantitative trait loci (eQTLs) were performed to assess the associations between significant SNPs and expression of nearby genes (within 1 Mbp). A genetic risk score (GRS) was used to assess the cumulative effect of multiple independent SNPs on LowT risk. Results and limitations: The two-stage GWAS found SNPs in 141 loci of 41 cytobands that were significantly associated with LowT (p < 5 × 10–8), including 94 novel loci from 38 cytobands. An eQTL analysis of these 141 loci revealed significant associations with RNA expression of 155 genes, including previously implicated (SHBG and JMJD1C) and novel (LIN28B, LCMT2, and ZBTB4) genes. Among the 141 loci, 42 were independently associated with LowT after a multivariable analysis. The GRS based on these 42 loci was significantly associated with LowT risk in independent individuals (N = 37 225, ptrend = 3.16 × 10–162). The risk ratio for LowT between men in the top and those in the bottom GRS deciles was 4.98-fold. Results are limited in generalizability as only Caucasians were studied. Conclusions: Identification of the genetic variants associated with LowT may improve our understanding of its etiology and identify high-risk men for LowT screening. Patient summary: We identified 141 new genetic loci that can be incorporated into a genetic risk score that can potentially identify men with low testosterone

    Characterizing re-triage guidelines: A scoping review of states\u27 rules and regulations

    No full text
    Background:State guidelines for re-triage, or emergency inter-facility transfer, have never been characterized across the United States. Methods: All 50 states\u27 Department of Health and/or Trauma System websites were reviewed for publicly available re-triage guidelines within their rules and regulations. Communication was made via phone or email to state agencies or trauma advisory committees to obtain or confirm the absence of guidelines where public data was unavailable. Guideline criteria were abstracted and grouped into domains of Center for Disease Control Field Triage Criteria: pattern/anatomy of injury, vital signs, special populations, and mechanisms of injury. Re-triage criteria were summarized across states using median and interquartile ranges for continuous data and frequencies for categorical data. Demographic data of states with and without re-triage guidelines were compared using the Wilcoxon rank sum test. Results: Re-triage guidelines were identified for 22 of 50 states (44%). Common anatomy of injury criteria included head trauma (91% of states with guidelines), spinal cord injury (82%), chest injury (77%), and pelvic injury (73%). Common vital signs criteria included Glasgow Coma Score (91% of states) ranging from 8 to 14, systolic blood pressure (36%) ranging from 90 to 100 mm Hg, and respiratory rate (23%) with all using 10 respirations/minute. Common special populations criteria included mechanical ventilation (73% of states), age (68%) ranging from60 years, cardiac disease (59%), and pregnancy (55%). No significant demographic differences were found between states with versus without re-triage guidelines. Conclusion: A minority of US states have re-triage guidelines. Characterizing existing criteria can inform future guideline development
    corecore