1,647 research outputs found
Review of long-term adverse effects associated with the use of chemically-modified animal and nonanimal source hyaluronic acid dermal fillers
Although only recently introduced, chemically-modified hyaluronic acid dermal fillers have gained widespread acceptance as âredefiningâ dermal fillers in the fields of dermatology and cosmetic facial surgery. Although hyaluronic acid-based dermal fillers have a low overall incidence of long term side effects, occasional adverse outcomes, ranging from chronic lymphoplasmacytic inflammatory reactions to classic foreign body-type granulomatous reactions have been documented. These long-term adverse events are reviewed
Foreign Body Reaction to Hyaluronic Acid (RestylaneÂŽ): An Adverse Outcome of Lip Augmentation
Non-animal source hyaluronic acid (RestylaneÂŽ) is a relatively new redefining dermal filler that is being employed with increasing frequency in the fields of dermatology and cosmetic/facial plastic surgery. We report a case of a 74-year-old woman who presented with a firm submucosal nodule of the lower lip, which clinically was thought to represent a benign neoplasm. An excisional biopsy revealed the presence of multiple cyst-like vacuolated areas surrounded by granulomatous tissue composed predominantly of histiocytes and foamy macrophages, consistent with a foreign body reaction. Subsequent to the pathology findings, the patient acknowledged that she had received injections of RestylaneÂŽ to the lips approximately 6 months before discovering the nodule. She had not mentioned this to her dentist or oral and maxillofacial surgeon to whom she had been referred because she believed that these two events were not related. Although hyaluronic acid-based dermal fillers reportedly have a low incidence of long term side effects, clinicians should be aware of the possible development of foreign body reactions to these injectable agents
Salivary Heterotopia Of The Parathyroid Gland: A Report of Two Cases and Review of the Literature
Two cases of periparathyroid salivary gland heterotopia are described. A review of the records of the Department of Pathology, Long Island Jewish Medical Center, over a 4-year period, identified 759 surgical specimens containing parathyroid gland tissue. Of these, 2 (0.26%) contained foci of ectopic salivary gland tissue. Both cases were associated with cyst formation. To date, 9 additional cases of heterotopic salivary gland tissue associated with the parathyroid gland have been described in the literature
Clinically aggressive central giant cell granulomas in two patients with neurofibromatosis 1
Background
Neurofibromatosis 1 (NF1) is an autosomal dominantly inherited disorder caused by a spectrum of mutations affecting the Nf1 gene. Affected patients develop benign and malignant tumors at an increased frequency. Clinical findings include multiple cutaneous cafĂŠ-au-lait pigmentations, neurofibromas, axillary freckling, optic gliomas, benign iris hamartomas (Lisch nodules), scoliosis, and poorly defined soft tissue lesions of the skeleton. Kerl first reported an association of NF1 with multiple central giant cell granulomas (CGCGs) of the jaws. There have since been 4 additional published cases of NF1 patients with CGCGs of the jaws.
Clinical cases
We report on 2 patients who presented with NF1 and aggressive CGCGs of the jaws. In both cases, the clinical course was characterized by numerous recurrences despite mechanical curettage and surgical resection.
Conclusions
We review proposed mechanisms to explain the apparent association between NF1 and an increased incidence of CGCGs of the jaws. While the presence of CGCGs of the jaws in patients with NF1 could represent either a coincidental association or a true genetic linkage, we propose that this phenomenon is most likely related to NF1-mediated osseous dysplasia. Compared to normal bone, the Nf1-haploinsufficient bone in a patient with NF1 may be less able to remodel in response to as of yet unidentified stimuli (e.g. excessive mechanical stress and/or vascular fragility), and consequently may be more susceptible to developing CGCG-like lesions. Alternatively, the CGCG in NF1 patients could represent a true neoplasm, resulting from additional, as of yet unidentified, genetic alterations to Nf1-haploinsufficient bone
Bilateral Central Giant Cell Granulomas of the Mandible in An Eight Year-Old Girl with Noonan Syndrome (Noonan-Like/Multiple Giant Cell Lesions Syndrome)
A number of conditions can present with lesions that histologically are indistinguishable from the central giant cell granuloma (CGCG) of bone, including brown tumors of hyperparathyroidism, cherubism, and, less commonly, a number of inherited syndromes.
We report a case of an eight-year girl who presented with bilateral CGCGs of the
posterior mandible. Characteristic facial features, reported increased post-operative bleeding and history of pulmonary stenosis led us to suspect a diagnosis of Noonan syndrome. A medical geneticist confirmed this on further evaluation.
This case report will discuss the salient features of this diagnosis
Human rotavirus replicates in salivary glands and primes immune responses in facial and intestinal lymphoid tissues of gnotobiotic pigs
Human rotavirus (HRV) is a leading cause of viral gastroenteritis in children across the globe. The virus has long been established as a pathogen of the gastrointestinal tract, targeting small intestine epithelial cells and leading to diarrhea, nausea, and vomiting. Recently, this classical infection pathway was challenged by the findings that murine strains of rotavirus can infect the salivary glands of pups and dams and transmit via saliva from pups to dams during suckling. Here, we aimed to determine if HRV was also capable of infecting salivary glands and spreading in saliva using a gnotobiotic (Gn) pig model of HRV infection and disease. Gn pigs were orally inoculated with various strains of HRV, and virus shedding was monitored for several days post-inoculation. HRV was shed nasally and in feces in all inoculated pigs. Infectious HRV was detected in the saliva of four piglets. Structural and non-structural HRV proteins, as well as the HRV genome, were detected in the intestinal and facial tissues of inoculated pigs. The pigs developed high IgM antibody responses in serum and small intestinal contents at 10 days post-inoculation. Additionally, inoculated pigs had HRV-specific IgM antibody-secreting cells present in the ileum, tonsils, and facial lymphoid tissues. Taken together, these findings indicate that HRV can replicate in salivary tissues and prime immune responses in both intestinal and facial lymphoid tissues of Gn pigs.Instituto de VirologĂaFil: Nyblade, Charlotte. Virginia Polytechnic Institute and State University. Virginia-Maryland College of Veterinary Medicine. Department of Biomedical Sciences and Pathobiology; Estados UnidosFil: Zhou, Peng. Virginia Polytechnic Institute and State University. Virginia-Maryland College of Veterinary Medicine. Department of Biomedical Sciences and Pathobiology; Estados UnidosFil: Frazier, Maggie. Virginia Polytechnic Institute and State University. Virginia-Maryland College of Veterinary Medicine. Department of Biomedical Sciences and Pathobiology; Estados UnidosFil: Frazier, Annie. Virginia Polytechnic Institute and State University. Virginia-Maryland College of Veterinary Medicine. Department of Biomedical Sciences and Pathobiology; Estados UnidosFil: Hensley, Casey. Virginia Polytechnic Institute and State University. Virginia-Maryland College of Veterinary Medicine. Department of Biomedical Sciences and Pathobiology; Estados UnidosFil: Fantasia-Davis, Ariana. Virginia Polytechnic Institute and State University. Virginia-Maryland College of Veterinary Medicine. Department of Biomedical Sciences and Pathobiology; Estados UnidosFil: Shahrudin, Shabihah. Indiana University. Department of Biology; Estados UnidosFil: Hoffer, Miranda. Indiana University. Department of Biology; Estados UnidosFil: Agbemabiese, Chantal Ama. Indiana University. Department of Biology; Estados UnidosFil: LaRue, Lauren. GIVAX Inc.; Estados UnidosFil: Barro, Mario. GIVAX Inc.; Estados UnidosFil: Patton, John T. Indiana University. Department of Biology; Estados UnidosFil: ParreĂąo, Gladys Viviana. Virginia Polytechnic Institute and State University. Virginia-Maryland College of Veterinary Medicine. Department of Biomedical Sciences and Pathobiology; Estados UnidosFil: ParreĂąo, Gladys Viviana. Instituto Nacional de TecnologĂa Agropecuaria (INTA). INCUINTA. Instituto de Virologia e Innovaciones Tecnologicas (IVIT); ArgentinaFil: ParreĂąo, Gladys Viviana. Consejo Nacional de Investigaciones CientĂficas y TĂŠcnicas; ArgentinaFil: Yuan, Lijuan. Virginia Polytechnic Institute and State University. Center for Emerging, Zoonotic, and ArthropodâBorne Pathogens; Estados Unido
Sonic hedgehog gene-enhanced tissue engineering for bone regeneration
Improved methods of bone regeneration are needed in the craniofacial rehabilitation of patients with significant bone deficits secondary to tumor resection, congenital deformities, and prior to prosthetic dental reconstruction. In this study, a gene-enhanced tissue-engineering approach was used to assess bone regenerative capacity of Sonic hedgehog (Shh)-transduced gingival fibroblasts, mesenchymal stem cells, and fat-derived cells delivered to rabbit cranial bone defects in an alginate/collagen matrix. Human Shh cDNA isolated from fetal lung tissue was cloned into the replication-incompetent retroviral expression vector LNCX, in which the murine leukemia virus retroviral LTR drives expression of the neomycin-resistance gene. The rat beta-actin enhancer/promoter complex was engineered to drive expression of Shh. Reverse transcriptase-polymerase chain reaction analysis demonstrated that the transduced primary rabbit cell populations expressed Shh RNA. Shh protein secretion was confirmed by enzyme-linked immunosorbent assay (ELISA). Alginate/ type I collagen constructs containing 2 times 106 Shh-transduced cells were introduced into male New Zealand White rabbit calvarial defects (8 mm). A total of eight groups (N=6) were examined: unrestored empty defects, matrix alone, matrix plus the three cell populations transduced with both control and Shh expression vectors. The bone regenerative capacity of Shh gene enhanced cells was assessed grossly, radiographically and histologically at 6 and 12 weeks postimplantation. After 6 weeks, new full thickness bone was seen emanating directly from the alginate/collagen matrix in the Shh-transduced groups. Quantitative two-dimensional digital analysis of histological sections confirmed statistically significant (P<0.05) amounts of bone regeneration in all three Shh-enhanced groups compared to controls. Necropsy failed to demonstrate any evidence of treatment-related side effects. This is the first study to demonstrate that Shh delivery to bone defects, in this case through a novel gene-enhanced tissue-engineering approach, results in significant bone regeneration. This encourages further development of the Shh gene-enhanced tissue-engineering approach for bone regeneration
Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV
The performance of muon reconstruction, identification, and triggering in CMS
has been studied using 40 inverse picobarns of data collected in pp collisions
at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection
criteria covering a wide range of physics analysis needs have been examined.
For all considered selections, the efficiency to reconstruct and identify a
muon with a transverse momentum pT larger than a few GeV is above 95% over the
whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4,
while the probability to misidentify a hadron as a muon is well below 1%. The
efficiency to trigger on single muons with pT above a few GeV is higher than
90% over the full eta range, and typically substantially better. The overall
momentum scale is measured to a precision of 0.2% with muons from Z decays. The
transverse momentum resolution varies from 1% to 6% depending on pseudorapidity
for muons with pT below 100 GeV and, using cosmic rays, it is shown to be
better than 10% in the central region up to pT = 1 TeV. Observed distributions
of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV
The performance of muon reconstruction, identification, and triggering in CMS
has been studied using 40 inverse picobarns of data collected in pp collisions
at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection
criteria covering a wide range of physics analysis needs have been examined.
For all considered selections, the efficiency to reconstruct and identify a
muon with a transverse momentum pT larger than a few GeV is above 95% over the
whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4,
while the probability to misidentify a hadron as a muon is well below 1%. The
efficiency to trigger on single muons with pT above a few GeV is higher than
90% over the full eta range, and typically substantially better. The overall
momentum scale is measured to a precision of 0.2% with muons from Z decays. The
transverse momentum resolution varies from 1% to 6% depending on pseudorapidity
for muons with pT below 100 GeV and, using cosmic rays, it is shown to be
better than 10% in the central region up to pT = 1 TeV. Observed distributions
of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
X-ray emission from the Sombrero galaxy: discrete sources
We present a study of discrete X-ray sources in and around the
bulge-dominated, massive Sa galaxy, Sombrero (M104), based on new and archival
Chandra observations with a total exposure of ~200 ks. With a detection limit
of L_X = 1E37 erg/s and a field of view covering a galactocentric radius of ~30
kpc (11.5 arcminute), 383 sources are detected. Cross-correlation with Spitler
et al.'s catalogue of Sombrero globular clusters (GCs) identified from HST/ACS
observations reveals 41 X-rays sources in GCs, presumably low-mass X-ray
binaries (LMXBs). We quantify the differential luminosity functions (LFs) for
both the detected GC and field LMXBs, whose power-low indices (~1.1 for the
GC-LF and ~1.6 for field-LF) are consistent with previous studies for
elliptical galaxies. With precise sky positions of the GCs without a detected
X-ray source, we further quantify, through a fluctuation analysis, the GC LF at
fainter luminosities down to 1E35 erg/s. The derived index rules out a
faint-end slope flatter than 1.1 at a 2 sigma significance, contrary to recent
findings in several elliptical galaxies and the bulge of M31. On the other
hand, the 2-6 keV unresolved emission places a tight constraint on the field
LF, implying a flattened index of ~1.0 below 1E37 erg/s. We also detect 101
sources in the halo of Sombrero. The presence of these sources cannot be
interpreted as galactic LMXBs whose spatial distribution empirically follows
the starlight. Their number is also higher than the expected number of cosmic
AGNs (52+/-11 [1 sigma]) whose surface density is constrained by deep X-ray
surveys. We suggest that either the cosmic X-ray background is unusually high
in the direction of Sombrero, or a distinct population of X-ray sources is
present in the halo of Sombrero.Comment: 11 figures, 5 tables, ApJ in pres
- âŚ