390 research outputs found
Sleep Period Optimization Model For Layered Video Service Delivery Over eMBMS Networks
Long Term Evolution-Advanced (LTE-A) and the evolved Multimedia Broadcast
Multicast System (eMBMS) are the most promising technologies for the delivery
of highly bandwidth demanding applications. In this paper we propose a green
resource allocation strategy for the delivery of layered video streams to users
with different propagation conditions. The goal of the proposed model is to
minimize the user energy consumption. That goal is achieved by minimizing the
time required by each user to receive the broadcast data via an efficient power
transmission allocation model. A key point in our system model is that the
reliability of layered video communications is ensured by means of the Random
Linear Network Coding (RLNC) approach. Analytical results show that the
proposed resource allocation model ensures the desired quality of service
constraints, while the user energy footprint is significantly reduced.Comment: Proc. of IEEE ICC 2015, Selected Areas in Communications Symposium -
Green Communications Track, to appea
Urban Microclimate and Traffic Monitoring with Mobile Wireless Sensor Networks
Climate is usually defined as the average of the atmospheric conditions over both an extended period of time and a large region. Small scale patterns of climate resulting from the combined influence of topography, urban buildings structure, watercourses, vegetation, are known as microclimates, which refers to a specific site or location. The microclimate scale may be at the level of a settlement (urban or rural), neighborhood, cluster, street or buffer space in between buildings or within the building itself. Specifically, the dispersion and dilution of air pollutants emitted by vehicles is one of the most investigated topics within urban meteorology, for its fundamental impact on the environment affecting cities of all sizes. This issues concern the average and peak values of various air pollutants as well as their temporal trends and spatial variability. The accurate detection of these values might be advantageously exploited by public authorities to better plan the public and private transportation by evaluating the impact on people health, while controlling the greenhouse phenomenon. As the unpredictable nature of a climate variations requires an incessant and ubiquitous sensing,Wireless Sensor Networks (WSNs) represent a key technology for environmental monitoring, hazard detection and, consequently, for decision making (Martinez et al., 2004). A WSN is designed to be self-configuring and independent from any pre-existing infrastructure, being composed of a large number of elementary Sensor Nodes (SNs) that can be large-scale deployed with small installation and maintenance costs. Literature contains several examples of frameworks for evaluating the urban air quality with WSNs, as it is reported in (Santini et al., 2008). In addition, in (Cordova-Lopez et al., 2007) it is addressed the monitoring of exhaust and environmental pollution through the use of WSN and GIS technology. As micro-climate monitoring usually requires deploying a large number of measurement tools, in (Shu-Chiung et al., 2009) it is adopted vehicular wireless sensor networks (VWSNs) approach to reduce system complexity, while achieving fine-grainedmonitoring. Another aspect strictly correlated with microclimate establishment is represented by the ecologic footprint of traffic congestion due to inefficient traffic management. As a consequence, an increasing number of cities are going to develop intelligent transport system (ITS) as an approach to harmonize roads and vehicles in optimized and green paths. ITSs involves several technologies as advanced informatics, data communications and transmissions, electronics and computer control with the aim of real-time traffic reporting and alerting. Such a framework allows remote operation management and self-configuration of traffic flows, as well as
LTE enhancements for Public Safety and Security communications to support Group Multimedia Communications
Currently Public Safety and Security communication systems rely on reliable
and secure Professional Mobile Radio (PMR) Networks that are mainly devoted to
provide voice services. However, the evolution trend for PMR networks is
towards the provision of new value-added multimedia services such as video
streaming, in order to improve the situational awareness and enhance the
life-saving operations. The challenge here is to exploit the future commercial
broadband networks to deliver voice and multimedia services satisfying the PMR
service requirements. In particular, a viable solution till now seems that of
adapting the new Long Term Evolution technology to provide IP-based broadband
services with the security and reliability typical of PMR networks. This paper
outlines different alternatives to achieve this goal and, in particular,
proposes a proper solution for providing multimedia services with PMR standards
over commercial LTE networks.Comment: IEEE Network Magazine, to appea
- …