23 research outputs found

    Phospholipase C in Dictyostelium discoideum:Cyclic AMP surface receptor and G-protein-regulated activity in vitro

    Get PDF
    The cellular slime mould Dictyostelium discoideum shows several responses after stimulation with the chemoattractant cAMP, including a transient rise in cyclic AMP (cAMP), cGMP and Ins(1,4,5)P-3. In this paper the regulation of phospholipase C in vitro is described. Under our experimental conditions commercial PtdIns(4,5)P-2 cannot be used to analyse phospholipase C activity in Dictyostelium lysates, because it is hydrolysed mainly to glycerophosphoinositol instead of Ins(l,4,5)P-3. Enzyme activity was determined with endogenous unlabelled PtdInsP(2) as a substrate. The product was measured by isotope-dilution assay and identified as authentic Ins(1,4,5)P-3. Since phospholipase C is strictly Ca2+-dependent, with an optimal concentration range of 1-100 mu M, cell lysates were prepared in EGTA and the enzyme reaction was started by adding 10 mu M free Ca2+. Phospholipase C activity increased 2-fold during Dictyoslelium development up to 8 h of starvation, after which the activity declined to less than 10 % of the vegetative level. Enzyme activity in vitro increased up to 2-fold after stimulation of cells with the agonist cAMP in vivo. Addition of 10 mu M guanosine 5'-[gamma-thio]triphosphate during lysis activated the enzyme to the same extent, and this effect was antagonized by guanosine 5'-[beta-thio]diphosphate. These results strongly suggest that surface cAMP receptors and G-proteins regulate phospholipase C during Dictyostelium development.</p

    Cyclic nucleotide specificity of the activator and catalytic sites of a cGMP-stimulated cGMP phosphodiesterase from Dictyostelium discoideum

    Get PDF
    The cellular slime mold Dictyostelium discoideum has an intracellular phosphodiesterase which specifically hydrolyzes cGMP. The enzyme is activated by low cGMP concentrations, and is involved in the reduction of chemoattractant-mediated elevations of cGMP levels. The interaction of 20 cGMP derivatives with the activator site and with the catalytic site of the enzyme has been investigated. Binding of cGMP to the activator site is strongly reduced (more than 80-fold) if cGMP is no longer able to form a hydrogen bond at N2H2 or O2’H. Modifications at N7, C8, O3’ and O5’ induce only a small reduction of binding affinity. A cyclic phosphate structure, as well as a negatively charged oxygen atom at phosphorus, are essential to obtain activation of the enzyme. Substitution of the axial exocyclic oxygen atom by sulphur is tolerated; modification of the equatorial oxygen atom reduces the binding activity of cGMP to the activator site by 90-fold. Binding of cGMP to the catalytic site is strongly reduced if cGMP is modified at N1H, C6O, C8 and O3’, while modifications at N2H2, N3, N7, O2’H, and O5’ have minor effects. Both exocyclic oxygen atoms are important to obtain binding of cGMP to the catalytic site. The results indicate that activation of the enzyme by cGMP and hydrolysis of cGMP occur at different sites of the enzyme. cGMP is recognized at these sites by different types of molecular interaction between cGMP and the protein. cGMP derivatives at concentrations which saturate the activator site do not induce the same degree of activation of the enzyme (activation 2.3-6.6-fold). The binding affinities of the analogues for the activator site and their maximal activation are not correlated. Our results suggest that the enzyme is activated because cGMP bound to the activator site stabilizes a state of the enzyme which has a higher affinity for cGMP at the catalytic site.

    Selective down-regulation of cell surface cAMP-binding sites and cAMP-induced responses in Dictyostelium discoideum

    Get PDF
    Extracellular cAMP induces an intracellular accumulation of cAMP and cGMP levels in Dictyostelium discoideum, cAMP is detected by cell-surface receptors which are composed of a class of fast-dissociating sites (t1/2 = 1-2 s) and a class of slow-dissociating sites (t1/2 = 15-150 s). Exposure of D. discoideum cells to 1 mM cAMP for 30 min induces a reduction of cAMP binding (down-regulation). The number of fast-dissociating sites was reduced by 80-90% in down-regulated cells. These sites are composed of two forms with high and low affinity which interconvert during the binding reaction. In down-regulated cells this transition still occurred in the residual sites. The accumulation of cellular cAMP levels induced by a saturating stimulus decreased by 80-90%. The number of slow-dissociating sites was not significantly reduced in down-regulated cells, but their affinity decreased about 10-fold. The accumulation of cellular cGMP levels induced by a saturating stimulus was not decreased; however, about 20-fold higher cAMP concentrations were required to induce the same response. These results demonstrate that the cAMP transduction pathways to adenylate cyclase and guanylate cyclase are down-regulated differently. Furthermore, the results suggest that the fast-dissociating sites are involved in the activation of adenylate cyclase, while the slow-dissociating sites are coupled to guanylate cyclase.

    Reduced cAMP Secretion in Dictyostelium discoideum Mutant HB3

    Get PDF
    Extracellular cAMP induces the intracellular synthesis and subsequent secretion of cAMP in Dictyostelium discoideum (relay). cAMP relay was strongly diminished in mutant HB3 which shows abnormal development by making very small fruiting bodies. Extracellular cAMP binds to receptors on the surface of mutant cells and induces the rapid activation of adenylate cyclase. Intracellular cAMP rises to a concentration as high as that in wild-type cells but only a very small amount of cAMP is secreted. cAMP secretion in wild-type cells starts immediately after cAMP production, and is proportional to the intracellular cAMP concentration. In the mutant cells cAMP secretion starts a few minutes after cAMP production; by that time most of the intracellular cAMP is already degraded by phosphodiesterase and little cAMP is available for secretion. We conclude that mutant HB3 has a defect in the mechanism by which Dictyostelium cells secrete cAMP.

    Cyclic AMP relay and cyclic AMP-induced cyclic GMP accumulation during development of Dictyostelium discoideum

    Get PDF
    Cyclic AMP-induced cAMP and cGMP responses during development of Dictyostelium discoideum were investigated. The cAMP-induced cGMP response is maximal when aggregation is in full progress, and then decreases to about 10% of the maximal level during further multicellular development. The cAMP response increases upon starvation, reaches its maximum at the onset of aggregation, and then decreases to about 8% of the maximum level. The dynamics of the post-aggregative cAMP response are in qualitative agreement with the dynamics of the cAMP relay response in aggregation-competent cells.
    corecore