7 research outputs found

    Chronic constant light exposure aggravates high fat diet-induced renal injury in rats

    Get PDF
    Obesity-related kidney disease is now recognized as a global health issue, with a substantial number of patients developing progressive renal failure and end-stage renal disease. Interestingly, recent studies indicate light pollution is a novel environmental risk factor for chronic kidney disease. However, the impact of light pollution on obesity-related kidney disease remains largely unknown, with its underlying mechanism insufficiently explained. Renal hypoxia induced factor 1α (HIF1α) is critical in the development of glomerulosclerosis and renal fibrosis. The present study explored effects of constant light exposure on high fat diet (HFD) -induced renal injury and its association with HIF1α signal pathway. Thirty-two male Sprague Dawley rats were divided into four groups according to diet (HFD or normal chow diet) and light cycles (light/dark or constant light). After 16 weeks treatment, rats were sacrificed and pathophysiological assessments were performed. In normal chow fed rats, constant light exposure led to glucose abnormalities and dyslipidemia. In HFD fed rats, constant light exposure exacerbated obesity, glucose abnormalities, insulin resistance, dyslipidemia, renal functional decline, proteinuria, glomerulomegaly, renal inflammation and fibrosis. And, constant light exposure caused an increase in HIF1α and a decrease in prolyl hydroxylase domain 1 (PHD1) and PHD2 expression in kidneys of HFD-fed rats. Then, we demonstrated that BMAL1 bound directly to the promoters of PHD1 in mouse podocyte clone 5 cell line (MPC5) by ChIP assays. In conclusion, chronic constant light exposure aggravates HFD-induced renal injuries in rats, and it is associated with activation of HIF1α signal pathway

    Metformin alleviates hepatic iron overload and ferroptosis through AMPK-ferroportin pathway in HFD-induced NAFLD

    Get PDF
    Highlights Metformin alleviates HIO and ferroptosis in HFD-induced NAFLD FPN is involved in the molecular mechanism of metformin on HIO in HFD-induced NAFLD Metformin upregulates FPN expression by reducing lysosomal ubiquitination degradation Summary Metformin prevents progression of non-alcoholic fatty liver disease (NAFLD). However, the potential mechanism is not entirely understood. Ferroptosis, a recently recognized nonapoptotic form of regulated cell death, has been reported to be involved in the pathogenesis of NAFLD. Here, we investigated the effects of metformin on ferroptosis and its potential mechanism in NAFLD. We found that metformin prevented the progression of NAFLD, and alleviated hepatic iron overload (HIO), ferroptosis and upregulated ferroportin (FPN) expression in vivo and in vitro. Mechanically, metformin reduced the lysosomal degradation pathway of FPN through activation AMPK, thus upregulated the expression of FPN protein, alleviated HIO and ferroptosis, and prevented progression of NAFLD. These findings discover a mechanism of metformin, suggesting that targeting FPN may have the therapeutic potential for treating NAFLD and related disorders

    Constant Light Exposure Alters Gut Microbiota and Promotes the Progression of Steatohepatitis in High Fat Diet Rats

    Get PDF
    Background: Non-alcoholic fatty liver disease (NAFLD) poses a significant health concern worldwide. With the progression of urbanization, light pollution may be a previously unrecognized risk factor for NAFLD/NASH development. However, the role of light pollution on NAFLD is insufficiently understood, and the underlying mechanism remains unclear. Interestingly, recent studies indicate the gut microbiota affects NAFLD/NASH development. Therefore, the present study explored effects of constant light exposure on NAFLD and its related microbiotic mechanisms. Material and method: Twenty-eight SD male rats were divided into four groups (n=7 each): rats fed a normal chow diet, and exposed to standard light-dark cycle (ND-LD); rats fed a normal chow diet, and exposed to constant light (ND-LL); rats fed a high fat diet, and exposed to standard light-dark cycle (HFD-LD); and rats on a high fat diet, and exposed to constant light (HFD-LL). Body weight, hepatic pathophysiology, gut microbiota, and short/medium chain fatty acids in colon contents, serum lipopolysaccharide (LPS) and liver LPS-binding protein (LBP) mRNA expression were documented post intervention and compared among groups. Result: In normal chow fed groups, rats exposed to constant light displayed glucose abnormalities and dyslipidemia. In HFD-fed rats, constant light exposure exacerbated glucose abnormalities, insulin resistance, inflammation and liver steatohepatitis. Constant light exposure altered composition of gut microbiota in both normal chow and HFD fed rats. Compared with HFD-LD group, HFD-LL rats displayed less Butyricicoccus, Clostridium and Turicibacter, butyrate levels in colon contents, decreased colon expression of occludin-1 and zonula occluden‐1 (ZO-1) , and increased serum LPS and liver LBP mRNA expression. Conclusion: Constant light exposure impacts gut microbiota and its metabolic products, impairs gut barrier function and gut-liver axis, promotes NAFLD/NASH progression in HFD rats

    Chronic constant light exposure aggravates high fat diet-induced renal injury in rats

    Get PDF
    Obesity-related kidney disease is now recognized as a global health issue, with a substantial number of patients developing progressive renal failure and end-stage renal disease. Interestingly, recent studies indicate light pollution is a novel environmental risk factor for chronic kidney disease. However, the impact of light pollution on obesity-related kidney disease remains largely unknown, with its underlying mechanism insufficiently explained. Renal hypoxia induced factor 1α (HIF1α) is critical in the development of glomerulosclerosis and renal fibrosis. The present study explored effects of constant light exposure on high fat diet (HFD) -induced renal injury and its association with HIF1α signal pathway. Thirty-two male Sprague Dawley rats were divided into four groups according to diet (HFD or normal chow diet) and light cycles (light/dark or constant light). After 16 weeks treatment, rats were sacrificed and pathophysiological assessments were performed. In normal chow fed rats, constant light exposure led to glucose abnormalities and dyslipidemia. In HFD fed rats, constant light exposure exacerbated obesity, glucose abnormalities, insulin resistance, dyslipidemia, renal functional decline, proteinuria, glomerulomegaly, renal inflammation and fibrosis. And, constant light exposure caused an increase in HIF1α and a decrease in prolyl hydroxylase domain 1 (PHD1) and PHD2 expression in kidneys of HFD-fed rats. Then, we demonstrated that BMAL1 bound directly to the promoters of PHD1 in mouse podocyte clone 5 cell line (MPC5) by ChIP assays. In conclusion, chronic constant light exposure aggravates HFD-induced renal injuries in rats, and it is associated with activation of HIF1α signal pathway

    Synthesis of Cucurbitacin B Derivatives as Potential Anti-Hepatocellular Carcinoma Agents

    No full text
    Cucurbitacin B shows potent activity against tumor cells, but its high toxicity limits its application in the clinic. A series of cucurbitacin B derivatives was synthesized and evaluated for their anti-hepatocellular carcinoma (HCC) activities against the HepG-2 cell line. These compounds were also tested for their toxicity against the L-O2 normal cell line. The compound with the most potential, 10b, exhibited potent activity against the HepG-2 cell line with an IC50 value of 0.63 μM. Moreover, compound 10b showed the highest TI value (4.71), which is a 14.7-fold improvement compared to its parent compound cucurbitacin B. A preliminary molecular mechanism study of 10b indicated that 10b could inhibit P-STAT3 to induce the activation of mitochondrial apoptotic pathways. An in vivo acute toxicity study indicated that the compound 10b has preferable safety and tolerability compared with cucurbitacin B. These findings indicate that compound 10b might be considered as a lead compound for exploring effective anti-HCC drugs

    Constant light exposure alters gut microbiota and short-/medium-chain fatty acids and aggravates PCOS-like traits in HFD-fed rats

    No full text
    Objective: This study investigated the effects of constant light exposure on polycystic ovary syndrome (PCOS)-like endocrine and metabolic changes in high-fat diet (HFD)-fed rats and to elucidate the related microbiotic mechanisms. Methods: A total of 32 female Sprague-Dawley rats were divided into four groups (n = 8 each): rats on a normal chow diet with standard light-dark cycle, rats on a normal chow diet with constant light exposure, rats on an HFD with standard light-dark cycle, and rats on an HFD with constant light exposure. After 16 weeks of treatment, changes in anthropometric parameters, estrous cycle, hormone profiles, ovarian pathology, and gut microbiota and short-/medium-chain fatty acids in colon contents were assessed. Results: Constant light exposure aggravated PCOS-like phenotypes in HFD-fed rats, such as hyperandrogenism, disrupted estrous cycle, and polycystic ovaries. Additionally, constant light exposure and an HFD synergized to decrease α-diversity of gut microbiota, create a reduced abundance of Ruminococcus genus, and create an increased abundance of Firmicutes and the Firmicutes/Bacteroidetes ratio. In HFD-fed rats, the group with constant light exposure had an increase in propionate acid and a decrease in total medium-chain fatty acids in colon contents compared with the standard light-dark cycle group. Conclusions: Constant light exposure causes gut dysbiosis, alters production of short- and medium-chain fatty acids, and aggravates PCOS-like traits in HFD-fed rats
    corecore