15 research outputs found

    Large-scale Google Street View Images for Urban Change Detection

    Get PDF
    Urbanization has entered a new phase characterized by urban changes occurring at a micro-scale and “under the roof”, as opposed to external modifications. These changes, known as urban retrofitting, involve the incorporation of novel technologies or features into pre-existing systems to promote sustainability. Given the limitations of remote sensing images in identifying such urban changes, novel tools need to be developed for detecting urban retrofitting. In this study, we first build a pipeline to collect large-scale time-series urban street view images from Google Street View in Mecklenburg County, North Carolina. And we examine the feasibility of utilizing the acquired dataset to detect diverse forms of urban retrofitting, including re-building, re-greening and re-capital

    Integrated Berth and Crane Scheduling Problem Considering Crane Coverage in Multi-Terminal Tidal Ports under Uncertainty

    No full text
    In this work, we study the integrated berth and crane scheduling problem in a tidal port with multiple terminals, considering the uncertainties, tides, maximum coverage of cranes and interference between cranes. For coping with the uncertainties, a certain number of randomly generated samples are used to evaluate the solutions, and slack variables are introduced to reduce the impact caused by the variation in vessel arrival and crane operational efficiency. A novel nonlinear mixed integer programming model is first formulated for the problem to minimize the sum of expectation and variance of costs under all samples. An improved adaptive genetic algorithm, combining a simulated annealing mechanism and greedy construction strategy, is developed and implemented by MATLAB. The feasibility and validity of the algorithm and the benefits of multi-terminal collaborative scheduling strategy under uncertainty are evaluated through numerical experiments. The results show that the algorithm can obtain feasible scheduling solutions with higher quality. Compared to the strategy that considers either the uncertainty or the multi-terminal collaborative mechanism, the resulting solution considering both can effectively reduce the cost and improve the competitiveness of the port

    Integrated Berth and Crane Scheduling Problem Considering Crane Coverage in Multi-Terminal Tidal Ports under Uncertainty

    No full text
    In this work, we study the integrated berth and crane scheduling problem in a tidal port with multiple terminals, considering the uncertainties, tides, maximum coverage of cranes and interference between cranes. For coping with the uncertainties, a certain number of randomly generated samples are used to evaluate the solutions, and slack variables are introduced to reduce the impact caused by the variation in vessel arrival and crane operational efficiency. A novel nonlinear mixed integer programming model is first formulated for the problem to minimize the sum of expectation and variance of costs under all samples. An improved adaptive genetic algorithm, combining a simulated annealing mechanism and greedy construction strategy, is developed and implemented by MATLAB. The feasibility and validity of the algorithm and the benefits of multi-terminal collaborative scheduling strategy under uncertainty are evaluated through numerical experiments. The results show that the algorithm can obtain feasible scheduling solutions with higher quality. Compared to the strategy that considers either the uncertainty or the multi-terminal collaborative mechanism, the resulting solution considering both can effectively reduce the cost and improve the competitiveness of the port

    Self-Raman 1176 nm Laser Generation from Nd:YVO<sub>4</sub> Crystal by Resonator Cavity Coating

    No full text
    Crystal coating is an important process in laser crystal applications. According to the crystal characteristics of neodymium-doped yttrium vanadate (Nd:YVO4), its intrinsic parameters, and optical film design theory, Ta2O5 and SiO2 were selected separately as high and low refractive index materials. The optical properties and surface roughness of the films were characterized by OptiLayer and Zygo interferometers, and the effects of ion source bias on refractive index and surface roughness were investigated so that the optimal ion source parameters were determined. Optical monitoring and quartz crystal control were combined to accurately control the thickness of each film layer and to reduce the monitoring error of film thickness. The prepared crystal device was successfully applied to the 1176 nm laser output system

    Using WGCNA (weighted gene co-expression network analysis) to identify the hub genes of skin hair follicle development in fetus stage of Inner Mongolia cashmere goat.

    No full text
    ObjectiveMature hair follicles represent an important stage of hair follicle development, which determines the stability of hair follicle structure and its ability to enter the hair cycle. Here, we used weighted gene co-expression network analysis (WGCNA) to identify hub genes of mature skin and hair follicles in Inner Mongolian cashmere goats.MethodsWe used transcriptome sequencing data for the skin of Inner Mongolian cashmere goats from fetal days 45-135 days, and divided the co expressed genes into different modules by WGCNA. Characteristic values were used to screen out modules that were highly expressed in mature skin follicles. Module hub genes were then selected based on the correlation coefficients between the gene and module eigenvalue, gene connectivity, and Gene Ontology (GO)/Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. The results were confirmed by quantitative polymerase chain reaction (qPCR).ResultsTen modules were successfully defined, of which one, with a total of 3166 genes, was selected as a specific module through sample and gene expression pattern analyses. A total of 584 candidate hub genes in the module were screened by the correlation coefficients between the genes and module eigenvalue and gene connectivity. Finally, GO/KEGG functional enrichment analyses detected WNT10A as a key gene in the development and maturation of skin hair follicles in fetal Inner Mongolian cashmere goats. qPCR showed that the expression trends of 13 genes from seven fetal skin samples were consistent with the sequencing results, indicating that the sequencing results were reliable.n
    corecore