35 research outputs found

    The association between stress hyperglycemia and unfavorable outcomes in patients with anterior circulation stroke after mechanical thrombectomy

    Get PDF
    Background and purposeStress hyperglycemia is common in critical and severe diseases. However, few studies have examined the association between stress hyperglycemia and the functional outcomes of patients with anterior circulation stroke, after mechanical thrombectomy (MT), in different diabetes status. This study therefore aimed to determine the relationship between stress hyperglycemia and the risk of adverse neurological functional outcomes in anterior circulation stroke patients with and without diabetes after MT.MethodsData of 408 patients with acute anterior circulation stroke treated with MT through the green-channel treatment system for emergency stroke at the First Affiliated Hospital of Jinan University between January 2016 and December 2020 were reviewed retrospectively. The stress hyperglycemia ratio (SHR) was calculated as fasting plasma glucose (mmol/L) divided by glycosylated hemoglobin (%). The patients were stratified into four groups by quartiles of SHR (Q1-Q4). The primary outcome was an excellent (nondisabled) functional outcome at 3 months after admission (modified Rankin Scale score of 0–1). The relationship between stress hyperglycemia and neurological outcome after stroke was assessed using multivariate logistic regression.ResultsAfter adjusting for potential confounders, compared with patients in Q1, those in Q4 were less likely to have an excellent outcome at 3 months (odds ratio [OR], 0.32, 95% confidence interval [CI], 0.14–0.66, p = 0.003), a good outcome at 3 months (OR, 0.41, 95% CI, 0.20–0.84, p = 0.020), and major neurological improvement (OR, 0.38, 95% CI, 0.19–0.73, p = 0.004). Severe stress hyperglycemia increased risks of 3-months all-cause mortality (OR, 2.82, 95% CI, 1.09–8.29, p = 0.041) and ICH (OR, 2.54, 95% CI, 1.21–5.50, p = 0.015).ConclusionStress hyperglycemia was associated with a reduced rate of excellent neurological outcomes, and increased mortality and ICH risks in patients with anterior circulation stroke after MT regardless of diabetes status

    Boosting with an aerosolized Ad5-nCoV elicited robust immune responses in inactivated COVID-19 vaccines recipients

    Get PDF
    IntroductionThe SARS-CoV-2 Omicron variant has become the dominant SARS-CoV-2 variant and exhibits immune escape to current COVID-19 vaccines, the further boosting strategies are required.MethodsWe have conducted a non-randomized, open-label and parallel-controlled phase 4 trial to evaluate the magnitude and longevity of immune responses to booster vaccination with intramuscular adenovirus vectored vaccine (Ad5-nCoV), aerosolized Ad5-nCoV, a recombinant protein subunit vaccine (ZF2001) or homologous inactivated vaccine (CoronaVac) in those who received two doses of inactivated COVID-19 vaccines. ResultsThe aerosolized Ad5-nCoV induced the most robust and long-lasting neutralizing activity against Omicron variant and IFNg T-cell response among all the boosters, with a distinct mucosal immune response. SARS-CoV-2-specific mucosal IgA response was substantially generated in subjects boosted with the aerosolized Ad5-nCoV at day 14 post-vaccination. At month 6, participants boosted with the aerosolized Ad5-nCoV had remarkably higher median titer and seroconversion of the Omicron BA.4/5-specific neutralizing antibody than those who received other boosters. DiscussionOur findings suggest that aerosolized Ad5-nCoV may provide an efficient alternative in response to the spread of the Omicron BA.4/5 variant.Clinical trial registrationhttps://www.chictr.org.cn/showproj.html?proj=152729, identifier ChiCTR2200057278

    Iguratimod inhibits protein citrullination and inflammation by downregulating NBCe2 in patients with rheumatoid arthritis

    No full text
    Background: Bicarbonate has recently been identified as a crucial factor affecting peptidylarginine deiminase (PAD) activity; however, the mechanism underlying its role in rheumatoid arthritis (RA) remains unclear. Iguratimod (IGU), a small-molecule disease-modifying anti-rheumatic drug, requires further investigation. This study aimed to explore the mechanism by which bicarbonate affects citrullination and inflammation in RA and identify new targets for IGU. Methods: We enrolled 20 patients with RA in the study. Sodium bicarbonate cotransporter 2 (NBCe2) was detected in the peripheral blood neutrophils and peripheral blood mononuclear cells (PBMCs) of these patients. The effects of varying concentrations of IGU, methotrexate (MTX), dexamethasone (DXM), and S0859 (an NBCe2 inhibitor) on NBCe2, PAD2, PAD4, and citrullinated histone H3 (cit-H3) levels in, migration ability of, and cytokine production from neutrophils and PBMCs were examined. Results: Our findings showed that in patients with RA, citrullinated protein production by peripheral blood neutrophils instead of PBMCs, which showed higher NBCe2 expression levels, increased with an increase in the bicarbonate concentration. In addition, tumor necrosis factor-alpha (TNF-α) promoted NBCe2 expression in neutrophils from patients with RA. Furthermore, we revealed that the inhibitory effects of IGU on neutrophil NBCe2 and cit-H3 levels, degrees of inhibition of neutrophil and PBMC migration, and suppression of interleukin 6, TNF-α, and metalloproteinase-9 secretion from neutrophil-like differentiated HL-60 cells did not substantially differ from those of MTX, DXM, and S0859 at specific doses. Conclusions: Bicarbonate promotes protein citrullination and inflammation in RA via NBCe2, and IGU can downregulate NBCe2

    Multi-Step Ahead Short-Term Electricity Load Forecasting Using VMD-TCN and Error Correction Strategy

    No full text
    The electricity load forecasting plays a pivotal role in the operation of power utility companies precise forecasting and is crucial to mitigate the challenges of supply and demand in the smart grid. More recently, the hybrid models combining signal decomposition and artificial neural networks have received popularity due to their applicability to reduce the difficulty of prediction. However, the commonly used decomposition algorithms and recurrent neural network-based models still confront some dilemmas such as boundary effects, time consumption, etc. Therefore, a hybrid prediction model combining variational mode decomposition (VMD), a temporal convolutional network (TCN), and an error correction strategy is proposed. To address the difficulty in determining the decomposition number and penalty factor for VMD decomposition, the idea of weighted permutation entropy is introduced. The decomposition hyperparameters are optimized by using a comprehensive indicator that takes account of the complexity and amplitude of the subsequences. Besides, a temporal convolutional network is adopted to carry out feature extraction and load prediction for each subsequence, with the primary forecasting results obtained by combining the prediction of each TCN model. In order to further improve the accuracy of prediction for the model, an error correction strategy is applied according to the prediction error of the train set. The Global Energy Competition 2014 dataset is employed to demonstrate the effectiveness and practicality of the proposed hybrid model. The experimental results show that the prediction performance of the proposed hybrid model outperforms the contrast models. The accuracy achieves 0.274%, 0.326%, and 0.405 for 6-steps, 12-steps, and 24 steps ahead forecasting, respectively, in terms of the mean absolute percentage error

    Adsorption Characteristics of Norfloxacin by Biochar Prepared by Cassava Dreg: Kinetics, Isotherms, and Thermodynamic Analysis

    No full text
    Biochars (BC) generated from biomass residues have been recognized as effective sorbents for organic compounds. In this study, biochars as adsorbents for the removal of norfloxacin (NOR) from aqueous solutions were evaluated. Biochars were prepared from cassava dregs at 350 °C, 450 °C, 550 °C, 650 °C, and 750 °C, respectively (labeled as BC350, BC450, BC550, BC650, and BC750). The results showed that the kinetic data were best fitted to the pseudo second-order model, indicating that the sorption was governed by the availability of sorption sites on the biochar surfaces rather than the NOR concentration in the solution. Sorption isotherms of NOR were well described by the Freundlich model, and the Freundlich coefficients (lgkF) increased with the pyrolysis temperature of biochars. Thermodynamic analysis indicated the feasibility and spontaneity of the NOR adsorption process. The NOR adsorption on BC450, BC550, BC650, and BC750 was an endothermic process, while an exothermic process occurred for BC350. FTIR studies further suggested that the adsorption mechanism was possibly attributable to H-bond and π-π interactions between NOR and biochars. Overall, this work constitutes a basis for further research considering the bioavailability and toxicity of antibiotics in the presence of biochar

    New insights into MAIT cells in autoimmune diseases

    No full text
    Mucosal-associated invariant T (MAIT) cells are resident T cells that express semi-invariant TCR chains and are restricted by monomorphic major histocompatibility complex (MHC) class I-related molecules (MR1). MAIT cells can be activated by microbial-specific metabolites (MR1-dependent mode) or cytokines (MR1-independent mode). Activated MAIT cells produce chemokines, cytotoxic molecules (granzyme B and perforin), and proinflammatory cytokines (IFN-γ, TNF-α, and IL-17), to clear pathogens and target infected cells involved in the pro-inflammatory, migratory, and cytolytic properties of MAIT cells. MAIT cells produce pro-inflammatory cytokines in the target organs of autoimmune diseases and contribute to the development and progression of autoimmune diseases. This article reviews the biological characteristics, activation mechanism, dynamic migration, and dual functions of MAIT cells, and focuses on the mechanism and potential application of MAIT cells in the early diagnosis, disease activity monitoring, and therapeutic targets of autoimmune diseases, to lay a foundation for future research

    In Silico Prediction of the Anti-Depression Mechanism of a Herbal Formula (Tiansi Liquid) Containing Morinda officinalis and Cuscuta chinensis

    No full text
    Purpose: Depression is a sickening psychiatric condition that is prevalent worldwide. To manage depression, the underlying modes of antidepressant effect of herbals are important to be explored for the development of natural drugs. Tiansi Liquid is a traditional Chinese medicine (TCM) that is prescribed for the management of depression, however its underlying mechanism of action is still uncertain. The purpose of this study was to systematically investigate the pharmacological mode of action of a herbal formula used in TCM for the treatment of depression. Methods: Based on literature search, an ingredients-targets database was developed for Tiansi Liquid, followed by the identification of targets related to depression. The interaction between these targets was evaluated on the basis of protein-protein interaction network constructed by STITCH and gene ontology (GO) enrichment analysis using ClueGO plugin. Results: As a result of literature search, 57 components in Tiansi Liquid formula and 106 potential targets of these ingredients were retrieved. A careful screening of these targets led to the identification of 42 potential targets associated with depression. Ultimately, 327 GO terms were found by analysis of gene functional annotation clusters and abundance value of these targets. Most of these terms were found to be closely related to depression. A significant number of protein targets such as IL10, MAPK1, PTGS2, AKT1, APOE, PPARA, MAPK1, MIF, NOS3 and TNF-α were found to be involved in the functioning of Tiansi Liquid against depression. Conclusions: The findings elaborate that Tiansi Liquid can be utilized to manage depression, however, multiple molecular mechanisms of action could be proposed for this effect. The observed core mechanisms could be the sensory perception of pain, regulation of lipid transport and lipopolysaccharide-mediated signaling pathway

    Synthesis and Optical Properties of CdSeTe/CdZnS/ZnS Core/Shell Nanorods

    No full text
    Semiconductor nanorods (NRs) have great potential in optoelectronic devices for their unique linearly polarized luminescence which can break the external quantum efficiency limit of light-emitting diodes (LEDs) based on spherical quantum dots. Significant progress has been made for developing red, green, and blue light-emitting NRs. However, the synthesis of NRs emitting in the deep red region, which can be used for accurate red LED displays and promoting plant growth, is currently less explored. Here, we report the synthesis of deep red CdSeTe/CdZnS/ZnS dot-in-rod core/shell NRs via a seeded growth method, where the doping of Te in the CdSe core can extend the NR emission to the deep red region. The rod-shaped CdZnS shell is grown over CdSeTe seeds. By growing a ZnS passivation shell, the CdSeTe/CdZnS/ZnS NRs exhibit a photoluminescence emission peak at 670 nm, a full width at a half maximum of 61 nm and a photoluminescence quantum yield of 45%. The development of deep red NRs can greatly extend the applications of anisotropic nanocrystals

    Otolith Morphology and Population Discrimination of Triplophysa yarkandensis

    No full text
    To study the classification, identification, and discrimination between different geographical populations of Triplophysa yarkandensis and explore the related otolith morphology and fish life history, this study statistically analyzed the morphological otolith indices and fish bodies of 734 T. yarkandensis from the Yarkand River, Hotan River, and Tarim River using otolith morphology and fish ecology methods. The results showed that otoliths were small in T. yarkandensis, approximately elliptic, thicker in the middle, gradually thinning to the outer edge, and with a prominent protrusion in the center of the external surface. Otolith length was obviously larger than otolith width while the excisural notch was not obvious, wherein the rostrum was developed, the ventral otolith edge was smooth with a shallow arc, and the otolith dorsal had a crest-like ridge. No significant difference between left and right lapillus morphology was observed (P > 0.05). The otolith morphological indices followed a logarithmic function with the body length and weight (R2=0.48~0.62). It reflects the ontogenetic adaptation to the environment, and migration behavior mainly affects the relationship between otolith morphology and fish body morphology. The SHAPE software was used to extract the outer otolith contour of T. yarkandensis, revealing morphological differences between T. yarkandensis populations. The parameter with the largest discriminant coefficient, i.e., the one in which the morphological difference has the greatest significant effect, was screened. Therewith, the discriminant formula was set up to calculate the discriminant accuracy. Discriminant analysis between groups using fish morphology, otolith morphometry and elliptical Fourier analysis, respectively. The discriminant accuracy of the Hotan River and Tarim River populations was 96.0%, 61.4%, and 82.2%; the Yarkand River and Hotan River was 93.0%, 79.5%, and 87.9%; the Yarkand River and Tarim River populations was 96.5%, 77.5%, and 86.8%. Environmental factors such as water temperature, spatial niche adaptation, and habitat depth were the main causes of the otolith morphological changes, also affecting the behavior characteristics of typical T. yarkandensis life history, especially fish migration. In this study, the T. yarkandensis was found to live in high altitude, low habitat temperature, and high salinity and alkaline waters, so the fish body growth and the elements deposition rate onto otoliths were low. T. yarkandensis belongs to the sub-cold water and benthic fish group, which only enters deep water during overwintering in winter. In other seasons, it swims along the edge and rests in shallow depth waters, so the otolith grows slowly and has a small size. The relationship between otolith and body growth reflected the T. yarkandensis ontogenetic adaptability to its habitat. As the T. yarkandensis residence time is short in the migration area, mineral elements in the water body cannot be rapidly deposited in a short period of time, and the accelerated body growth is not completely reflected in the otolith growth. Therefore, the short-distance migration behavior under habitat fragmentation mainly affects the correlation between otolith and fish growth in T. yarkandensis. The fish otolith morphology is highly species-specific and population-specific. T. yarkandensis otolith morphology was significantly different among the geographically different populations (P 90.0%) was slightly higher than that of elliptic Fourier analysis (> 80.0%), both of which could be used as the discrimination basis parameter. However, the traditional fish otolith morphology is easy to record, as repetitive operations are robust and less affected by the environment, especially in the contents of a carnivorous fish feeding analysis; therefore, vertebrate paleontology explore has a useful application prospect in these aspects. Moreover, it could serve as an effective tool to identify fish intraspecific differences in the case of growth restriction or bodily injury. Therefore, it is of great research value to introduce the otolith morphology into the population identification of T. yarkandensis. This study explored the T. yarkandensis morphological characteristics and compared otolith morphologies to effectively identify the geographically different population, co-relating otolith shape with T. yarkandensis growth (i.e., body length and quality) and resource management, providing theoretical support to further researches about the composition and migratory population growth. The T. yarkandensis intraspecies differences in different rivers were also compared concerning fish body morphology, otolith measurements, and elliptic Fourier analysis, providing strong evidence for traditional morphological classification. The effective utilization and cost control of incomplete fish samples was greatly favored by this study. Otolith morphology was applied for the first time in the classification and population identification of T. yarkandensis, which laid a foundation for the development and research of its microchemical features and life history strategy, presenting a reference for further identification and evolutionary classification of Triplophysa, strengthening the taxonomic foundation of aquatilia, and providing scientific basis for protecting the plateau fishery germplasm resources

    Colloidal Synthesis and Optical Properties of Cs<sub>2</sub>CuCl<sub>4</sub> Nanocrystals

    No full text
    Lead-free copper halide perovskite nanocrystals (NCs) are emerging materials with excellent photoelectric properties. Herein, we present a colloidal synthesis route for orthorhombic Cs2CuCl4 NCs with a well-defined cubic shape and an average diameter of 24 ± 2.1 nm. The Cs2CuCl4 NCs exhibited bright, deep blue photoluminescence, which was attributed to the Cu(II) defects. In addition, passivating the Cs2CuCl4 NCs by Ag+ could effectively improve the photoluminescence quantum yield (PLQY) and environmental stability
    corecore