46 research outputs found

    Production of Biologically Activated Carbon from Orange Peel and Landfill Leachate Subsequent Treatment Technology

    Get PDF
    In order to improve adsorption of macromolecular contaminants and promote the growth of microorganisms, active carbon for biological wastewater treatment or follow-up processing requires abundant mesopore and good biophile ability. In this experiment, biophile mesopore active carbon is produced in one-step activation with orange peel as raw material, and zinc chloride as activator, and the adsorption characteristics of orange peel active carbon is studied by static adsorption method. BET specific surface area and pore volume reached 1477 m2/g and 2.090 m3/g, respectively. The surface functional groups were examined by Fourier transform infrared spectroscopy (FT-IR). The surface of the as-prepared activated carbon contained hydroxyl group, carbonyl group, and methoxy group. The analysis based on X-ray diffraction spectrogram (XRD) and three-dimensional fluorescence spectrum indicated that the as-prepared activated carbon, with smaller microcrystalline diameter and microcrystalline thickness and enhanced reactivity, exhibited enhanced adsorption performance. This research has a deep influence in effectively controlling water pollution, improving area water quality, easing orange peel waste pollution, and promoting coordinated development among society, economy, and environment

    Influence of Hydrothermal Temperature on Phosphorus Recovery Efficiency of Porous Calcium Silicate Hydrate

    Get PDF
    Porous calcium silicate hydrate (PCSH) was synthesized by carbide residue and white carbon black. The influence of hydrothermal temperature on phosphorus recovery efficiency was investigated by Field Emission Scanning Electron Microscopy (FESEM), Brunauer-Emmett-Teller (BET), and X-Ray Diffraction (XRD). Hydrothermal temperature exerted significant influence on phosphorus recovery performance of PCSH. Hydrothermal temperature 170°C for PCSH was more proper to recover phosphorus. PCSH could recover phosphorus with content of 18.51%. The law of Ca2+ and OH− release was the key of phosphorus recovery efficiency, and this law depended upon the microstructure of PCSH. When the temperature of synthesis reached to 170°C, the reactions between CaO and amorphous SiO2 were more efficient. Solubility of SiO2 was a limiting factor

    Novel Technology for Phenol Wastewater Treatment Using Electrochemical Reactor

    Get PDF
    There are various electrochemical approaches to save energy, mostly by means of equipment improvement coupled with other water treatment technologies. Replacement of DC power with pulse power, modified reactor coupled with photocatalysis can decrease cost. But more or less additional input is developed, or infrastructure has to be replaced. In this paper, an N-Step electrochemical reactor, based on stage reaction modeling, is put forward. On the basis of not changing equipment investment and by adjustment of the operating current density at different levels, power consumption decreases. This model develops a foundation of electrochemical water treatment technology for the engineering application

    Preparation of BiVO 4

    Get PDF
    We prepared BiVO4-graphene nanocomposites by using a facile single-step method and characterized the material by x-ray diffraction, scanning electron microscopy, Fourier-transform infrared spectroscopy, ultraviolet-visible diffuse-reflection spectroscopy, and three-dimensional fluorescence spectroscopy. The results show that graphene oxide in the catalyst was thoroughly reduced. The BiVO4 is densely dispersed on the graphene sheets, which facilitates the transport of electrons photogenerated in BiVO4, thereby leading to an efficient separation of photogenerated carriers in the coupled graphene-nanocomposite system. For degradation of rhodamine B dye under visible-light irradiation, the photocatalytic activity of the synthesized nanocomposites was over ∼20% faster than for pure BiVO4 catalyst. To study the contribution of electrons and holes in the degradation reaction, silver nitrate and potassium sodium tartrate were added to the BiVO4-graphene photocatalytic reaction system as electron-trapping agent and hole-trapping agent, respectively. The results show that holes play the main role in the degradation of rhodamine B

    Bending behaviour of corroded RC continuous beams with C-FRCM strengthening system

    Get PDF
    This paper presents a numerical investigation into the bending behaviour of uncorroded and corroded reinforced concrete (RC) continuous beams with a strengthening system. Finite element analysis (FEA) was performed on ten RC beams considering interface performance, including five uncorroded and five corroded beams. The cracks development, bending capacities and load-displacement curves of the simulated RC beams in the loading process were validated against those from tests. Then, a parametric study including 35 RC beam models, considering the effects of carbon-fabric (CF) mesh layer, complete wrapping layer and the degree of corrosion of steel bar on their bending capacities, was conducted. Ductility and strengthening effects of specimens were discussed in the parametric study. It can be found that the carbon-fabric reinforced cementitious matrix (C-FRCM) strengthening system can improve the bending capacities of the corroded RC beams. As the layer of CF mesh increases, the ductility of the specimen decreases. The combined use of the C-FRCM plate and the complete wrapping as the end anchorage enhanced the ultimate loads of RC beams to a greater extent than those strengthened with C-FRCM plate only. The applicability of current design codes for RC beams with C-FRCM strengthening system was examined through comparisons of the bending capacity predictions of RC beams with those obtained from tests and numerical analyses. It was found that European Code (FIB Bulletin 14) provides more accurate predictions than American Specifications (ACI 549.4R-20, AC 434-0616-R1, ACI 440.2R-17) and Chinese Code (CECS 146–2003 (2007)). Therefore, design modifications based on the most accurate design rule of FIB Bulletin 14 were made. By utilizing regression analysis on the numerical results, the formula for bending capacities of the examined RC beams was proposed and showed improved accuracy

    Degradation of Glyphosate in Soil Photocatalyzed by Fe3O4/SiO2/TiO2 under Solar Light

    Get PDF
    In this study, Fe3O4/SiO2/TiO2 photocatalyst was prepared via a sol-gel method, and Fe3O4 particles were used as the core of the colloid. Diffraction peaks of Fe3O4 crystals are not found by XRD characterization, indicating that Fe3O4 particles are well encapsulated by SiO2. FTIR characterization shows that diffraction peaks of Ti-O-Si chemical bonds become obvious when the Fe3O4 loading is more than 0.5%. SEM characterization indicates that agglomeration occurs in the Fe3O4/SiO2/TiO2 photocatalyst, whereas photocatalysts modified by Fe3O4/SiO2 present excellent visible light absorption performance and photocatalytic activity, especially when the Fe3O4 loading is 0.5%. Photocatalytic degradation of glyphosate in soil by these photocatalysts under solar irradiation was investigated. Results show that 0.5% Fe3O4/SiO2/TiO2 has the best photocatalytic activity. The best moisture content of soil is 30%∼50%. Degradation efficiency of glyphosate reaches 89% in 2 h when the dosage of photocatalyst is 0.4 g/100 g (soil), and it increased slowly when more photocatalyst was used. Soil thickness is a very important factor for the photocatalytic rate. The thinner the soil is, the better the glyphosate degradation is. Degradation of glyphosate is not obviously affected by sunlight intensity when the intensity is below 6 mW/cm2 or above 10 mW/cm2, but it is accelerated significantly when the sunlight intensity increases from 6 mW/cm2 to 10 mW/cm2

    IGFBP-rP1, a potential molecule associated with colon cancer differentiation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In our previous studies, we have demonstrated that insulin-like growth factor binding protein-related protein1 (IGFBP-rP1) played its potential tumor suppressor role in colon cancer cells through apoptosis and senescence induction. In this study, we will further uncover the role of IGFBP-rP1 in colon cancer differentiation and a possible mechanism by revealing responsible genes.</p> <p>Results</p> <p>In normal colon epithelium, immunohistochemistry staining detected a gradient IGFBP-rP1 expression along the axis of the crypt. IGFBP-rP1 strongly expressed in the differentiated cells at the surface of the colon epithelium, while weakly expressed at the crypt base. In colon cancer tissues, the expression of IGFBP-rP1 correlated positively with the differentiation status. IGFBP-rP1 strongly expressed in low grade colorectal carcinoma and weakly expressed in high grade colorectal carcinoma. In vitro, transfection of PcDNA3.1(IGFBP-rP1) into RKO, SW620 and CW2 cells induced a more pronounced anterior-posterior polarity morphology, accompanied by upregulation with alkaline phosphatase (AKP) activity. Upregulation of carcino-embryonic antigen (CEA) was also observed in SW620 and CW2 transfectants. The addition of IGFBP-rP1 protein into the medium could mimic most but not all effects of IGFBP-rP1 cDNA transfection. Seventy-eight reproducibly differentially expressed genes were detected in PcDNA3.1(IGFBP-rP1)-RKO transfectants, using Affymetrix 133 plus 2.0 expression chip platform. Directed Acyclic Graph (DAG) of the enriched GO categories demonstrated that differential expression of the enzyme regulator activity genes together with cytoskeleton and actin binding genes were significant. IGFBP-rP1 could upreguate Transgelin (TAGLN), downregulate SRY (sex determining region Y)-box 9(campomelic dysplasia, autosomal sex-reversal) (SOX9), insulin receptor substrate 1(IRS1), cyclin-dependent kinase inhibitor 2B (p15, inhibits CDK4) (CDKN2B), amphiregulin(schwannoma-derived growth factor) (AREG) and immediate early response 5-like(IER5L) in RKO, SW620 and CW2 colon cancer cells, verified by Real time Reverse Transcription Polymerase Chain Reaction (rtRT-PCR). During sodium butyrate-induced Caco2 cell differentiation, IGFBP-rP1 was upregulated and the expression showed significant correlation with the AKP activity. The downregulation of IRS1 and SOX9 were also induced by sodium butyrate.</p> <p>Conclusion</p> <p>IGFBP-rP1 was a potential key molecule associated with colon cancer differentiation. Downregulation of IRS1 and SOX9 may the possible key downstream genes involved in the process.</p

    Ecological Network Analysis for Water Pollution Metabolism in Urban Water Use System: Case Study of Fuzhou, China

    No full text
    Water environment deterioration in urban environments is a critical concern in sustainable water management processes, and the method of urban water metabolism has not been developed more fully in this field. Therefore, there is a requirement to evaluate urban water metabolism with a focus on water quality for sustainable water use. In this study, information and network environ analyses in ecological network analysis (ENA) were explored to measure the water pollutant metabolism state. Six sub-basins in the old part of Fuzhou in China using data from 2016 and 2019 were selected for the case study. Results showed that (1) water pollutant metabolism amount decreased and the metabolism efficiency was improved; (2) the contribution of sub-basins III and IV for pollutant metabolism were more important than the other sub-basins; (3) the river in sub-basin III was the maximum recipient control as a sink node; and (4) ecological relations between compartments were improved for pollutant metabolism. Based on the results, we proposed five types of ENA indicators including TST, a, wj, matrix CX, matrix sgnU, and C for the water pollutant metabolism assessment. The method developed here provided new insights to understand the production, transport, degradation, and discharge of pollutants in water use activities in urban environments, and we hope it can be helpful to improve the extension and application of the water metabolism approach in managing urban water quantity and quality in future

    Synthesis and Enhanced Phosphate Recovery Property of Porous Calcium Silicate Hydrate Using Polyethyleneglycol as Pore-Generation Agent

    No full text
    The primary objective of this paper was to synthesize a porous calcium silicate hydrate (CSH) with enhanced phosphate recovery property using polyethyleneglycol (PEG) as pore-generation agent. The formation mechanism of porous CSH was proposed. PEG molecules were inserted into the void region of oxygen–silicon tetrahedron chains and the layers of CSH. A steric hindrance layer was generated to prevent the aggregation of solid particles. A porous structure was formed due to the residual space caused by the removal of PEG through incineration. This porous CSH exhibited highly enhanced solubility of Ca2+ and OH− due to the decreased particle size, declined crystalline, and increased specific surface area (SBET) and pore volume. Supersaturation was increased in the wastewater with the enhanced solubility, which was beneficial to the formation of hydroxyapatite (HAP) crystallization. Thus, phosphate can be recovered from wastewater by producing HAP using porous CSH as crystal seed. In addition, the regenerated phosphate-containing products (HAP) can be reused to achieve sustainable utilization of phosphate. The present research could provide an effective approach for the synthesis of porous CSH and the enhancement of phosphate recovery properties for environmental applications

    Preparation and Photocatalytic Performance of Nano-TiO2 Codoped with Iron III and Lanthanum III

    Get PDF
    Nanoscale titanium dioxide (nano-TiO2) was modified via metal doping to improve its photocatalytic activity and utilization of visible light. Nano-TiO2 doped with iron III (Fe3+) only, lanthanum III (La3+) only, and both Fe3+/La3+ was prepared using the sol-gel method. The photocatalytic activities of the three forms of doped nano-TiO2 were evaluated. Metal codoping limited crystal growth of crystal, and the sol-gel method was shown to be an effective technique for doping the lattice of TiO2 with Fe3+ and La3+. Codoping of nano-TiO2 with the tombarthite metal mixture had a synergistic effect of the photocatalytic performance, with the codoped nano-TiO2 exhibiting a performance greater than the sum of those of the single-doped nano-TiO2 samples. Kinetic studies showed that the photodegradation reaction of methyl orange by nano-TiO2 follows the Langmuir-Hinshelwood first order mechanism
    corecore