2 research outputs found

    Development and validation of a CT-based deep learning radiomics nomogram to predict muscle invasion in bladder cancer

    No full text
    Objective: This study aimed to develop a nomogram combining CT-based handcrafted radiomics and deep learning (DL) features to preoperatively predict muscle invasion in bladder cancer (BCa) with multi-center validation. Methods: In this retrospective study, 323 patients underwent radical cystectomy with pathologically confirmed BCa were enrolled and randomly divided into the training cohort (n = 226) and internal validation cohort (n = 97). And fifty-two patients from another independent medical center were enrolled as an independent external validation cohort. Handcrafted radiomics and DL features were constructed from preoperative nephrographic phase CT images. Least absolute shrinkage and selection operator (LASSO) regression was used to identify the most discriminative features in train cohort. Multivariate logistic regression was used to develop the predictive model and a deep learning radiomics nomogram (DLRN) was constructed. The predictive performance of models was evaluated by area under the curves (AUC) in the three cohorts. The calibration and clinical usefulness of DLRN were estimated by calibration curve and decision curve analysis. Results: The nomogram that incorporated radiomics signature and DL signature demonstrated satisfactory predictive performance for differentiating non-muscle invasive bladder cancer (NMIBC) from muscle invasive bladder cancer (MIBC), with an AUC of 0.884 (95 % CI: 0.813–0.953) in internal validation cohort and 0.862 (95 % CI: 0.756–0.968) in external validation cohort, respectively. Decision curve analysis confirmed the clinical usefulness of the nomogram. Conclusions: A CT-based deep learning radiomics nomogram exhibited a promising performance for preoperative prediction of muscle invasion in bladder cancer, and may be helpful in the clinical decision-making process

    Validity of a multiphase CT-based radiomics model in predicting the Leibovich risk groups for localized clear cell renal cell carcinoma: an exploratory study

    No full text
    Abstract Objective To develop and validate a multiphase CT-based radiomics model for preoperative risk stratification of patients with localized clear cell renal cell carcinoma (ccRCC). Methods A total of 425 patients with localized ccRCC were enrolled and divided into training, validation, and external testing cohorts. Radiomics features were extracted from three-phase CT images (unenhanced, arterial, and venous), and radiomics signatures were constructed by the least absolute shrinkage and selection operator (LASSO) regression algorithm. The radiomics score (Rad-score) for each patient was calculated. The radiomics model was established and visualized as a nomogram by incorporating significant clinical factors and Rad-score. The predictive performance of the radiomics model was evaluated by the receiver operating characteristic curve, calibration curve, and decision curve analysis (DCA). Results The AUC of the triphasic radiomics signature reached 0.862 (95% CI: 0.809–0.914), 0.853 (95% CI: 0.785–0.921), and 0.837 (95% CI: 0.714–0.959) in three cohorts, respectively, which were higher than arterial, venous, and unenhanced radiomics signatures. Multivariate logistic regression analysis showed that Rad-score (OR: 4.066, 95% CI: 3.495–8.790) and renal vein invasion (OR: 12.914, 95% CI: 1.118–149.112) were independent predictors and used to develop the radiomics model. The radiomics model showed good calibration and discrimination and yielded an AUC of 0.872 (95% CI: 0.821–0.923), 0.865 (95% CI: 0.800–0.930), and 0.848 (95% CI: 0.728–0.967) in three cohorts, respectively. DCA showed the clinical usefulness of the radiomics model in predicting the Leibovich risk groups. Conclusions The radiomics model can be used as a non-invasive and useful tool to predict the Leibovich risk groups for localized ccRCC patients. Critical relevance statement The triphasic CT-based radiomics model achieved favorable performance in preoperatively predicting the Leibovich risk groups in patients with localized ccRCC. Therefore, it can be used as a non-invasive and effective tool for preoperative risk stratification of patients with localized ccRCC. Key points • The triphasic CT-based radiomics signature achieves better performance than the single-phase radiomics signature. • Radiomics holds prospects in preoperatively predicting the Leibovich risk groups for ccRCC. • This study provides a non-invasive method to stratify patients with localized ccRCC. Graphical Abstrac
    corecore