22 research outputs found
Q-learning Based Optimal False Data Injection Attack on Probabilistic Boolean Control Networks
In this paper, we present a reinforcement learning (RL) method for solving
optimal false data injection attack problems in probabilistic Boolean control
networks (PBCNs) where the attacker lacks knowledge of the system model.
Specifically, we employ a Q-learning (QL) algorithm to address this problem. We
then propose an improved QL algorithm that not only enhances learning
efficiency but also obtains optimal attack strategies for large-scale PBCNs
that the standard QL algorithm cannot handle. Finally, we verify the
effectiveness of our proposed approach by considering two attacked PBCNs,
including a 10-node network and a 28-node network
Knowledge landscape of tumor-associated macrophage research: A bibliometric and visual analysis
Background and aimsTumor-associated macrophage (TAM) is a highly abundant immune population in tumor microenvironment, which plays an important role in tumor growth and progression. The aim of our study was to explore the development trends and research hotspots of TAM by bibliometric method.MethodsThe publications related to TAM were obtained from the Web of Science Core Collection database. Bibliometric analysis and visualization were conducted using VOSviewer, CiteSpace and R software.ResultsA total of 6,405 articles published between 2001 and 2021 were included. The United States and China received the most citations, whereas the University of Milan, the university of California San Francisco and Sun Yat-sen University were the main research institutions. Mantovani, Alberto from Humanitas University was the most productive authors with the most citations. Cancer Research published the most articles and received the most co-citations. Activation, angiogenesis, breast cancer, NF-κB and endothelial growth factor were important keywords in TAM research. Among them, PD-1/L1, nanoparticle, PI3Kγ, resistance and immune microenvironment have become the focus of attention in more recent research.ConclusionsThe research on TAM is rapidly evolving with active cooperation worldwide. Anticancer therapy targeting TAM is emerging and promising area of future research, especially in translational application. This may provide guidance and new insights for further research in the field of TAM
ET-1 receptor type B (ETBR) overexpression associated with ICAM-1 downregulation leads to inflammatory attenuation in experimental autoimmune myocarditis
Background An experimental autoimmune myocarditis rat model was established by subcutaneous injection of porcine myocardial myosin (PCM). The effect of ET-1 receptor type B (ETBR) overexpression on autoimmune myocarditis was observed via tail vein injection of ETBR overexpression lentivirus in rats. We further investigated the mechanisms involved in the regulation of autoimmune myocarditis by ETBR overexpression. Methods Six rats were randomly selected from 24 male Lewis rats as the NC group, and the remaining 18 rats were injected with PCM on Day 0 and Day 7, to establish the experimental autoimmune myocarditis (EAM) rat model. The 18 rats initially immunized were randomly divided into three groups: the EAM group, ETBR-oe group, and GFP group. On Day 21 after the initial immunization of rats, cardiac echocardiography and serum brain natriuretic peptide (BNP) analysis were performed to evaluate cardiac function, myocardial tissue HE staining was performed to assess myocardial tissue inflammatory infiltration and the myocarditis score, and mRNA expression of IFN-γ, IL-12, and IL-17 was detected by qRT-PCR. Subsequently, immunohistochemical analysis was performed to detect the localization and expression of the ETBR and ICAM-1 proteins, and the expression of ETBR and ICAM-1 was verified by qRT-PCR and western blotting methods. Results On Day 21 after initial immunization, left ventricular end-diastolic diameter (LVEDd), left ventricular end-systolic diameter (LVEDs), and serum BNP concentrations increased in the hearts of rats in the EAM group compared with the NC group (P < 0.01), and ejection fraction (EF) and fractional shortening (FS) decreased compared with those of the normal control (NC) group (P < 0.01). LVEDd, LVEDs, and serum BNP concentrations decreased in the ETBR-oe group compared with the EAM group, while EF and FS increased significantly (P < 0.01). HE staining showed that a large number of inflammatory cell infiltrates, mainly lymphocytes, were observed in the EAM group, and the myocarditis score was significantly higher than that of the NC group (P < 0.01). Compared with that of the EAM group, myocardial tissue inflammatory cell infiltration was significantly reduced in the ETBR-oe group, and the myocarditis scores were significantly lower (P < 0.01). The mRNAs of the inflammatory factors IFN-γ, IL-12 and IL-17 in myocardial tissue of rats in the EAM group exhibited elevated levels compared with those of the NC group (P < 0.01) while the mRNAs of IFN-γ, IL-12 and IL-17 were significantly decreased in the ETBR-oe group compared with the EAM group (P < 0.01). Immunohistochemistry showed that the staining depth of ETBR protein in myocardial tissue was greater in the EAM group than in the NC group, and significantly greater in the ETBR-oe group than in the EAM group, while the staining depth of ICAM-1 was significantly greater in the EAM group than in the NC group, and significantly lower in the ETBR-oe group than in the EAM group. The ICAM-1 expression level was significantly higher in the EAM group than in the NC group (P < 0.01), and was significantly lower in the ETBR-oe groupthan in the EAM group (P < 0.01)
Analysis of Antioxidant Capacity of Chromones in Saposhnikoviae Radix Obtained by Ultrasonic-Assisted Deep Eutectic Solvents Extraction
In this paper, ultrasonic-assisted deep eutectic solvent (DES) extraction was applied to the acquisition of chromones (cimicifugin, prim-o-glucosylcimifugin, and 5-o-methylvisamminoside) from Saposhnikoviae radix (SR). The extraction effects of 11 prepared DESs were screened taking contents of chromones as indexes. Furthermore, the optimum extraction conditions were confirmed using a single-factor test and response surface optimization test. Scavenging activities of DPPH anion and ABTS cation radicals of different SR extracts (DES, methanol, and ethanol) were studied. The analysis results of best extraction conditions optimized by Design-Expert software were as follows: extraction time (40 min), extraction temperature (60°C), and the solid/liquid ratio (32 mL/g). Scavenging rates of the DES extract for DPPH anion radical and ABTS cation radical were found to be 75.31% and 65.71%, which were higher than those of methanol and ethanol extracts. In conclusion, the developed extraction method can be regarded as a safe, green, and more effective approach for the extraction of chromones in SR
Isothermal kinase-triggered supramolecular assemblies as drug sensitizers
Protein kinases, the main regulators of a vast map of cellular processes, are the most attractive targets in drug discovery. Despite a few successful examples of protein kinase inhibitors, the drug discovery strategy of downregulating protein kinase activity has been quite limited and often fails even in animal models. Here, we utilize protein kinase A (PKA) activity to design PKA-triggered supramolecular assemblies with anticancer activities. Grafting a suitable peptide to PNIPAM raises the critical temperature of the LCST polymer above body temperature. Interestingly, the corresponding phosphorylated polymer has a critical temperature below body temperature, making this peptide-appended PNIPAM a suitable polymer for the PKA-triggered supramolecular assembly process. PKA-triggered assembly occurs selectively in PKA-upregulated MCF-7 cells, which disturbs the cytoskeleton and sensitizes cancer cells against doxorubicin. The chemosensitization is also observed in vivo to identify effective tumor inhibitors with satisfactory biocompatibility. Overall, this phosphorylation-induced (in principle, PKA-catalyzed) supramolecular assembly opens up a promising chemotherapy strategy for combating kinase-upregulated cancer
Gene-edited Mtsoc1 triple mutant Medicago plants do not flower
Optimized flowering time is an important trait that ensures successful plant adaptation and crop productivity. SOC1-like genes encode MADS transcription factors, which are known to play important roles in flowering control in many plants. This includes the best-characterized eudicot model Arabidopsis thaliana (Arabidopsis), where SOC1 promotes flowering and functions as a floral integrator gene integrating signals from different flowering-time regulatory pathways. Medicago truncatula (Medicago) is a temperate reference legume with strong genomic and genetic resources used to study flowering pathways in legumes. Interestingly, despite responding to similar floral-inductive cues of extended cold (vernalization) followed by warm long days (VLD), such as in winter annual Arabidopsis, Medicago lacks FLC and CO which are key regulators of flowering in Arabidopsis. Unlike Arabidopsis with one SOC1 gene, multiple gene duplication events have given rise to three MtSOC1 paralogs within the Medicago genus in legumes: one Fabaceae group A SOC1 gene, MtSOC1a, and two tandemly repeated Fabaceae group B SOC1 genes, MtSOC1b and MtSOC1c. Previously, we showed that MtSOC1a has unique functions in floral promotion in Medicago. The Mtsoc1a Tnt1 retroelement insertion single mutant showed moderately delayed flowering in long- and short-day photoperiods, with and without prior vernalization, compared to the wild-type. In contrast, Mtsoc1b Tnt1 single mutants did not have altered flowering time or flower development, indicating that it was redundant in an otherwise wild-type background. Here, we describe the generation of Mtsoc1a Mtsoc1b Mtsoc1c triple mutant lines using CRISPR-Cas9 gene editing. We studied two independent triple mutant lines that segregated plants that did not flower and were bushy under floral inductive VLD. Genotyping indicated that these non-flowering plants were homozygous for the predicted strong mutant alleles of the three MtSOC1 genes. Gene expression analyses using RNA-seq and RT-qPCR indicated that these plants remained vegetative. Overall, the non-flowering triple mutants were dramatically different from the single Mtsoc1a mutant and the Arabidopsis soc1 mutant; implicating multiple MtSOC1 genes in critical overlapping roles in the transition to flowering in Medicago
Macrophage Tim-3 maintains intestinal homeostasis in DSS-induced colitis by suppressing neutrophil necroptosis
T-cell immunoglobulin domain and mucin domain-3 (Tim-3) is a versatile immunomodulator that protects against intestinal inflammation. Necroptosis is a type of cell death that regulates intestinal homeostasis and inflammation. The mechanism(s) underlying the protective role of macrophage Tim-3 in intestinal inflammation is unclear; thus, we investigated whether specific Tim-3 knockdown in macrophages drives intestinal inflammation via necroptosis. Tim-3 protein and mRNA expression were assessed via double immunofluorescence staining and single-cell RNA sequencing (sc-RNA seq), respectively, in the colonic tissues of patients with inflammatory bowel disease (IBD) and healthy controls. Macrophage-specific Tim3-knockout (Tim-3M−KO) mice were generated to explore the function and mechanism of Tim-3 in dextran sodium sulfate (DSS)-induced colitis. Necroptosis was blocked by pharmacological inhibitors of receptor-interacting protein kinase (RIP)1, RIP3, and reactive oxygen species (ROS). Additionally, in vitro experiments were performed to assess the mechanisms of neutrophil necroptosis induced by Tim-3 knockdown macrophages. Although Tim-3 is relatively inactive in macrophages during colon homeostasis, it is highly active during colitis. Compared to those in controls, Tim-3M−KO mice showed increased susceptibility to colitis, higher colitis scores, and increased pro-inflammatory mediator expression. Following the administration of RIP1/RIP3 or ROS inhibitors, a significant reduction in intestinal inflammation symptoms was observed in DSS-treated Tim-3M−KO mice. Further analysis indicated the TLR4/NF-κB pathway in Tim-3 knockdown macrophages mediates the TNF-α-induced necroptosis pathway in neutrophils. Macrophage Tim-3 regulates neutrophil necroptosis via intracellular ROS signaling. Tim-3 knockdown macrophages can recruit neutrophils and induce neutrophil necroptosis, thereby damaging the intestinal mucosal barrier and triggering a vicious cycle in the development of colitis. Our results demonstrate a protective role of macrophage Tim-3 in maintaining gut homeostasis by inhibiting neutrophil necroptosis and provide novel insights into the pathogenesis of IBD
Targeting KRAS-mutant stomach/colorectal tumors by disrupting the ERK2-p53 complex
Summary: KRAS is widely mutated in human cancers, resulting in unchecked tumor proliferation and metastasis, which makes identifying KRAS-targeting therapies a priority. Herein, we observe that mutant KRAS specifically promotes the formation of the ERK2-p53 complex in stomach/colorectal tumor cells. Disruption of this complex by applying MEK1/2 and ERK2 inhibitors elicits strong apoptotic responses in a p53-dependent manner, validated by genome-wide knockout screening. Mechanistically, p53 physically associates with phosphorylated ERK2 through a hydrophobic interaction in the presence of mutant KRAS, which suppresses p53 activation by preventing the recruitment of p300/CBP; trametinib disrupts the ERK2-p53 complex by reducing ERK2 phosphorylation, allowing the acetylation of p53 protein by recruiting p300/CBP; acetylated p53 activates PUMA transcription and thereby kills KRAS-mutant tumors. Our study shows an important role for the ERK2-p53 complex and provides a potential therapeutic strategy for treating KRAS-mutant cancer