38,927 research outputs found
The Flatness of Mass-to-Light Ratio on Large Scales
It has been suggested that the mass-to-light () ratio of gravitationally
clustering objects is scale-independent on scales beyond galaxy clusters, and
may also be independent of the mass of the objects. In this paper, we show that
the scale behavior of ratio is closely related to the scaling of cosmic
structures larger than clusters. The scale dependence of the ratio can be
determined by comparing the observed scaling of richness function (RF) of
multi-scale identified objects with the model-predicted scaling of mass
function (MF) of large scale structures. Using the multi-scale identified
clusters from IRAS 1.2 Jy galaxy survey, we have made comparisons of the
observed RF scaling of IRAS -clusters with the MF scalings given by
simulations of three popular models SCDM, LCDM and OCDM. We find that, the M/L
ratio basically is scale-independent from the Abell radius up to about 24
Mpc, while it seems to show a slight, but systematical, increase over
this scale range. This result is weakly dependent on the cosmological
parameters.Comment: AAS Latex file, 8 pages+ 4 figures, accepted for publication in ApJ
A simple and natural interpretations of the DAMPE cosmic-ray electron/positron spectrum within two sigma deviations
The DArk Matter Particle Explorer (DAMPE) experiment has recently announced
the first results for the measurement of total electron plus positron fluxes
between 25 GeV and 4.6 TeV. A spectral break at about 0.9 TeV and a tentative
peak excess around 1.4 TeV have been found. However, it is very difficult to
reproduce both the peak signal and the smooth background including spectral
break simultaneously. We point out that the numbers of events in the two energy
ranges (bins) close to the 1.4 TeV excess have deficits. With the
basic physics principles such as simplicity and naturalness, we consider the
, , and deviations due to statistical
fluctuations for the 1229.3~GeV bin, 1411.4~GeV bin, and 1620.5~GeV bin.
Interestingly, we show that all the DAMPE data can be explained consistently
via both the continuous distributed pulsar and dark matter interpretations,
which have and (for all the 38
points in DAMPE electron/positron spectrum with 3 of them revised),
respectively. These results are different from the previous analyses by
neglecting the 1.4 TeV excess. At the same time, we do a similar global fitting
on the newly released CALET lepton data, which could also be interpreted by
such configurations. Moreover, we present a dark matter model with
Breit-Wigner mechanism, which can provide the proper dark matter annihilation
cross section and escape the CMB constraint. Furthermore, we suggest a few ways
to test our proposal.Comment: 18 pages, 6 figures, 5 tables. Figures and Bibs update
- …