25,645 research outputs found

    Abundance of moderate-redshift clusters in the Cold + Hot dark matter model

    Full text link
    Using a set of \pppm simulation which accurately treats the density evolution of two components of dark matter, we study the evolution of clusters in the Cold + Hot dark matter (CHDM) model. The mass function, the velocity dispersion function and the temperature function of clusters are calculated for four different epochs of z≤0.5z\le 0.5. We also use the simulation data to test the Press-Schechter expression of the halo abundance as a function of the velocity dispersion σv\sigma_v. The model predictions are in good agreement with the observational data of local cluster abundances (z=0z=0). We also tentatively compare the model with the Gunn and his collaborators' observation of rich clusters at z≈0.8z\approx 0.8 and with the x-ray luminous clusters at z≈0.5z\approx 0.5 of the {\it Einstein} Extended Medium Sensitivity Survey. The important feature of the model is the rapid formation of clusters in the near past: the abundances of clusters of \sigma_v\ge 700\kms and of \sigma_v\ge 1200 \kms at z=0.5z=0.5 are only 1/4 and 1/10 respectively of the present values (z=0z=0). Ongoing ROSAT and AXAF surveys of distant clusters will provide sensitive tests to the model. The abundance of clusters at z≈0.5z\approx 0.5 would also be a good discriminator between the CHDM model and a low-density flat CDM model both of which show very similar clustering properties at z=0z=0.Comment: 21 pages + 6 figures (uuencoded version of the PS files), Steward Preprints No. 118

    Measurement of the c-axis optical reflectance of AFe2_2As2_2 (A=Ba, Sr) single crystals: Evidence of different mechanisms for the formation of two energy gaps

    Full text link
    We present the c-axis optical reflectance measurement on single crystals of BaFe2_2As2_2 and SrFe2_2As2_2, the parent compounds of FeAs based superconductors. Different from the ab-plane optical response where two distinct energy gaps were observed in the SDW state, only the smaller energy gap could be seen clearly for \textbf{E}∥\parallelc-axis. The very pronounced energy gap structure seen at a higher energy scale for \textbf{E}∥\parallelab-plane is almost invisible. We propose a novel picture for the band structure evolution across the SDW transition and suggest different driving mechanisms for the formation of the two energy gaps.Comment: 4 page
    • …
    corecore