33,150 research outputs found
Laser ignition of an optically sensitised secondary explosive by a diode laser
As a green technology, laser ignition of a relatively insensitive secondary
explosive has been experimentally investigated. The explosive, hexanitrostilbene
(HNS), was doped with one of two optical sensitizers, carbon black or a laser
absorbing dye, and a continuous-wave (CW) infrared diode laser was used as the
igniting source. The ignition sensitivities of HNS with each of the two optical
sensitizers were analysed and compared in terms of: optical power threshold for
ignition, ignition delay and full burn delay at various laser powers. The results
have shown that both the chemical dye and carbon black optically sensitize
the explosive with similar efficiencies. In contrast to the carbon black, the dye
provides wavelength specificity and selectivity in the laser ignition process and its
solubility in some specific solvents improves the coating of the explosive material.
It was therefore concluded that the laser absorbing dye is a better candidate for
optical sensitization in laser ignition than the commonly used carbon black. The
combination of laser ignition sensitivity with wavelength selectivity potentially
offers higher reliability and safety at a low optical power for future ignitors of
secondary explosives
The influence of compact and ordered carbon coating on solid-state behaviors of silicon during electrochemical processes
To address the issues of large volume change and low conductivity of silicon (Si) materials, carbon coatings have been widely employed as surface protection agent and conductive medium to encapsulate the Si materials, which can improve the electrochemical performance of Si-based electrodes. There has been a strong demand to gain a deeper understanding of the impact of efficient carbon coating over the lithiation and delithiation process of Si materials. Here, we report the first observation of the extended two-phase transformation of carbon-coated Si nanoparticles (Si/C) during electrochemical processes. The Si/C nanoparticles were prepared by sintering Si nanoparticles with polyvinylidene chloride precursor. The Si/C electrode underwent a two-phase transition during the first 20 cycles at 0.2 C, but started to engage in solid solution reaction when the ordered compact carbon coating began to crack. Under higher current density conditions, the electrode was also found to be involved in solid solution reaction, which, however, was due to the overwhelming demand of kinetic property rather than the breaking of the carbon coating. In comparison, the Si/C composites prepared with sucrose possessed more disordered and porous carbon structures, and presented solid solution reaction throughout the entire cycling process
Simulating coronal condensation dynamics in 3D
We present numerical simulations in 3D settings where coronal rain phenomena
take place in a magnetic configuration of a quadrupolar arcade system. Our
simulation is a magnetohydrodynamic simulation including anisotropic thermal
conduction, optically thin radiative losses, and parametrised heating as main
thermodynamical features to construct a realistic arcade configuration from
chromospheric to coronal heights. The plasma evaporation from chromospheric and
transition region heights eventually causes localised runaway condensation
events and we witness the formation of plasma blobs due to thermal instability,
that evolve dynamically in the heated arcade part and move gradually downwards
due to interchange type dynamics. Unlike earlier 2.5D simulations, in this case
there is no large scale prominence formation observed, but a continuous coronal
rain develops which shows clear indications of Rayleigh-Taylor or interchange
instability, that causes the denser plasma located above the transition region
to fall down, as the system moves towards a more stable state. Linear stability
analysis is used in the non-linear regime for gaining insight and giving a
prediction of the system's evolution. After the plasma blobs descend through
interchange, they follow the magnetic field topology more closely in the lower
coronal regions, where they are guided by the magnetic dips.Comment: 47 pages, 59 figure
Towards symmetric scheme for superdense coding between multiparties
Recently Liu, Long, Tong and Li [Phys. Rev. A 65, 022304 (2002)] have
proposed a scheme for superdense coding between multiparties. This scheme seems
to be highly asymmetric in the sense that only one sender effectively exploits
entanglement. We show that this scheme can be modified in order to allow more
senders to benefit of the entanglement enhanced information transmission.Comment: 6 page
Locally D-optimal designs based on a class of composed models resulted from blending Emax and one-compartment models
A class of nonlinear models combining a pharmacokinetic compartmental model
and a pharmacodynamic Emax model is introduced. The locally D-optimal (LD)
design for a four-parameter composed model is found to be a saturated
four-point uniform LD design with the two boundary points of the design space
in the LD design support. For a five-parameter composed model, a sufficient
condition for the LD design to require the minimum number of sampling time
points is derived. Robust LD designs are also investigated for both models. It
is found that an LD design with parameters is equivalent to an LD design
with parameters if the linear parameter in the two composed models is a
nuisance parameter. Assorted examples of LD designs are presented.Comment: Published in at http://dx.doi.org/10.1214/009053607000000776 the
Annals of Statistics (http://www.imstat.org/aos/) by the Institute of
Mathematical Statistics (http://www.imstat.org
The Properties of H{\alpha} Emission-Line Galaxies at z = 2.24
Using deep narrow-band and -band imaging data obtained with
CFHT/WIRCam, we identify a sample of 56 H emission-line galaxies (ELGs)
at with the 5 depths of and (AB)
over 383 arcmin area in the ECDFS. A detailed analysis is carried out
with existing multi-wavelength data in this field. Three of the 56 H
ELGs are detected in Chandra 4 Ms X-ray observation and two of them are
classified as AGNs. The rest-frame UV and optical morphologies revealed by
HST/ACS and WFC3 deep images show that nearly half of the H ELGs are
either merging systems or with a close companion, indicating that the
merging/interacting processes play a key role in regulating star formation at
cosmic epoch z=2-3; About 14% are too faint to be resolved in the rest-frame UV
morphology due to high dust extinction. We estimate dust extinction from SEDs.
We find that dust extinction is generally correlated with H luminosity
and stellar mass (SM). Our results suggest that H ELGs are
representative of star-forming galaxies (SFGs). Applying extinction correction
for individual objects, we examine the intrinsic H luminosity function
(LF) at , obtaining a best-fit Schechter function characterized by a
faint-end slope of . This is shallower than the typical slope of
in previous works based on constant extinction correction.
We demonstrate that this difference is mainly due to the different extinction
corrections. The proper extinction correction is thus key to recovering the
intrinsic LF as the extinction globally increases with H luminosity.
Moreover, we find that our H LF mirrors the SM function of SFGs at the
same cosmic epoch. This finding indeed reflects the tight correlation between
SFR and SM for the SFGs, i.e., the so-called main sequence.Comment: 15 pages, 12 figures, 2 tables, Received 2013 October 11; accepted
2014 February 13; published 2014 March 18 by Ap
An innovative high accuracy autonomous navigation method for the Mars rovers
Autonomous navigation is an important function for a Mars rover to fulfill missions successfully. It is a critical technique to overcome the limitations of ground tracking and control traditionally used. This paper proposes an innovative method based on SINS (Strapdown Inertial Navigation System) with the aid of star sensors to accurately determine the rovers position and attitude. This method consists of two parts: the initial alignment and navigation. The alignment consists of a coarse position and attitude initial alignment approach and fine initial alignment approach. The coarse one is used to determine approximate position and attitude for the rover. This is followed by fine alignment to tune the approximate solution to accurate one. Upon the completion of initial alignment, the system can be used to provide real-time navigation solutions for the rover. An autonomous navigation algorithm is proposed to estimate and compensate the accumulated errors of SINS in real time. High accuracy attitude information from star sensor is used to correct errors in SINS. Simulation results demonstrate that the proposed methods can achieve a high precision autonomous navigation for Mars rovers. © 2014 IAA
Prescribed pattern transformation in swelling gel tubes by elastic instability
We present a study on swelling-induced circumferential buckling of tubular
shaped gels. Inhomogeneous stress develops as gel swells under mechanical
constraints, which gives rise to spontaneous buckling instability without
external force. Full control over the post-buckling pattern is experimentally
demonstrated. A simple analytical model is developed using elastic energy to
predict stability and post-buckling patterns upon swelling. Analysis reveals
that height to diameter ratio is the most critical design parameter to
determine buckling pattern, which agrees well with experimental and numerical
results.Comment: 32 pages, 7 figure
Recommended from our members
Processing of immiscible alloys by a twin-screw rheomixing process
Immiscible alloys with a microstructure in which a soft phase dispersed homogeneously in a hard matrix have great potential applications in advanced bearing systems, especially for automotive industry. Though the melt of an immiscible alloy is miscible at the temperature above the miscibility gap, it decomposes into two liquids when it passes through the liquid miscibility gap. Despite great efforts made worldwide, including extensive space experiments, no casting techniques so far can produce the desirable microstructure. Based on the extensive experience in mixing the immiscible organic liquids offered by the polymer processing community, a rheomixing process for immiscible alloys has been successfully developed at Brunel University using a twin-crew extruder. This paper presents the twin-screw rheomixing process and the experimental results on rheomixing of the immiscible Zn-Pb alloys
Nodeless superconductivity in IrPtTe with strong spin-orbital coupling
The thermal conductivity of superconductor IrPtTe
( = 0.05) single crystal with strong spin-orbital coupling was measured down
to 50 mK. The residual linear term is negligible in zero magnetic
field. In low magnetic field, shows a slow field dependence. These
results demonstrate that the superconducting gap of IrPtTe is
nodeless, and the pairing symmetry is likely conventional s-wave, despite the
existence of strong spin-orbital coupling and a quantum critical point.Comment: 5 pages, 4 figure
- …