47,808 research outputs found
Control of lasing in fully chaotic open microcavities by tailoring the shape factor
We demonstrate experimentally that lasing in a semiconductor microstadium can
be optimized by controlling its shape. Under spatially uniform optical pumping,
the first lasing mode in a GaAs microstadium with large major-to-minor-axis
ratio usually corresponds to a high-quality scar mode consisting of several
unstable periodic orbits. Interference of waves propagating along the
constituent orbits may minimize light leakage at particular major-to-minor-axis
ratio. By making stadium of the optimum shape, we are able to maximize the mode
quality factor and align the mode frequency to the peak of the gain spectrum,
thus minimizing the lasing threshold. This work opens the door to control
chaotic microcavity lasers by tailoring the shape factor
Information of Structures in Galaxy Distribution
We introduce an information-theoretic measure, the Renyi information, to
describe the galaxy distribution in space. We discuss properties of the
information measure, and demonstrate its relationship with the probability
distribution function and multifractal descriptions. Using the First Look
Survey galaxy samples observed by the Infrared Array Camera onboard Spitzer
Space Telescope, we present measurements of the Renyi information, as well as
the counts-in-cells distribution and multifractal properties of galaxies in
mid-infrared wavelengths. Guided by multiplicative cascade simulation based on
a binomial model, we verify our measurements, and discuss the spatial selection
effects on measuring information of the spatial structures. We derive structure
scan functions at scales where selection effects are small for the Spitzer
samples. We discuss the results, and the potential of applying the Renyi
information to measuring other spatial structures.Comment: 25 pages, 8 figures, submitted to ApJ; To appear in The Astrophysical
Journal 2006, 644, 678 (June 20th
A novel multi-objective evolutionary algorithm based on space partitioning
To design an e ective multi-objective optimization evolutionary algorithms (MOEA), we need to address the following issues: 1) the sensitivity to the shape of true Pareto front (PF) on decomposition-based MOEAs; 2) the loss of diversity due to paying so much attention to the convergence on domination-based MOEAs; 3) the curse of dimensionality for many-objective optimization problems on grid-based MOEAs. This paper proposes an MOEA based on space partitioning (MOEA-SP) to address the above issues. In MOEA-SP, subspaces, partitioned by a k-dimensional tree (kd-tree), are sorted according to a bi-indicator criterion de ned in this paper. Subspace-oriented and Max-Min selection methods are introduced to increase selection pressure and maintain diversity, respectively. Experimental studies show that MOEA-SP outperforms several compared algorithms on a set of benchmarks
Towards symmetric scheme for superdense coding between multiparties
Recently Liu, Long, Tong and Li [Phys. Rev. A 65, 022304 (2002)] have
proposed a scheme for superdense coding between multiparties. This scheme seems
to be highly asymmetric in the sense that only one sender effectively exploits
entanglement. We show that this scheme can be modified in order to allow more
senders to benefit of the entanglement enhanced information transmission.Comment: 6 page
Field study on adaptive thermal comfort in typical air conditioned classrooms
This study investigates adaptive thermal comfort in air conditioned classrooms in Hong Kong. A field survey was conducted in several typical classrooms at the City University of Hong Kong. This survey covered objective measurement of thermal environment parameters and subjective human thermal responses. A total of 982 student volunteers participated in the investigation. The results indicate that students in light clothing (0.42 clo) have adapted to the cooler classroom environments. The neutral temperature is very close to the preferred temperature of approximately 24 °C. Based on the MTSV ranging between −0.5 and + 0.5, the comfort range is between 21.56 °C and 26.75 °C. The lower limit is below that of the ASHRAE standard. Of the predicted mean vote (PMV) and the University of California, Berkeley (UCB) model, the UCB model predictions agree better with the mean thermal sensation vote (MTSV). Also, the respective fit regression models of the MTSV versus each of the following: operative temperature (Top), PMV, and UCB were obtained. This study provides a better understanding of acceptable classroom temperatures
- …