261 research outputs found

    Keen to get married:Why marriage is so important to 'independent' female migrant workers in Shenzhen, China

    Get PDF

    Growing up and becoming independent: an ethnographic study of new generation migrant workers in China

    Get PDF
    Based on anthropological fieldwork in factories in China’s Special Economic Zones (SEZs), this dissertation examines the process of ‘growing up’ and ‘becoming independent’ for young migrant workers from the countryside, especially in relation to their decisions about employment and marriage. In ‘post-socialist’ China, as many writers have observed, the old systems and ideas have not entirely faded away but new market logics have been imposed on them. Partly as a result of this, the process of achieving adulthood – i.e. the process through which young people should, in theory, learn how to position themselves as full members of society – is now filled with uncertainties. Old expectations about interactions with others have become invalid. This is especially so for young migrant workers from the countryside who, as I argue, possess a double social being, i.e. they are caught somewhere between childhood and adulthood, and who face the challenges of multilocality, i.e. they shift back and forth between rural and urban environments. For them, migration is a mandatory rite of passage, but one that often leaves them suspended in a position of liminality and uncertainty. The research found that young workers learn, in the course of migration, that manipulating personal networks is the most efficient way for them to get the resources they need – so that they can deal with the problems of uncertainty they face. They rely on the rather traditional mode of ‘interconnected personhood’, instead of developing what might be called ‘individualistic personhood’. Having said this, they are meanwhile enjoying the freedom, opportunities and symbolic values that individualistic personhood can bring them. They stand in between the two systems and typically avoid fully committing to one or the other. This is how they deal with risks and responsibilities within the constraints imposed by their background, gender, and class position

    Crystallization of Adenylylsulfate Reductase from Desulfovibrio gigas: A Strategy Based on Controlled Protein Oligomerization

    Get PDF
    Adenylylsulfate reductase (adenosine 5′-phosphosulfate reductase, APS reductase or APSR, E.C.1.8.99.2) catalyzes the conversion of APS to sulfite in dissimilatory sulfate reduction. APSR was isolated and purified directly from massive anaerobically grown Desulfovibrio gigas, a strict anaerobe, for structure and function investigation. Oligomerization of APSR to form dimers–α_2β_2, tetramers–α_4β_4, hexamers–α_6β_6, and larger oligomers was observed during purification of the protein. Dynamic light scattering and ultracentrifugation revealed that the addition of adenosine monophosphate (AMP) or adenosine 5′-phosphosulfate (APS) disrupts the oligomerization, indicating that AMP or APS binding to the APSR dissociates the inactive hexamers into functional dimers. Treatment of APSR with β-mercaptoethanol decreased the enzyme size from a hexamer to a dimer, probably by disrupting the disulfide Cys156—Cys162 toward the C-terminus of the β-subunit. Alignment of the APSR sequences from D. gigas and A. fulgidus revealed the largest differences in this region of the β-subunit, with the D. gigas APSR containing 16 additional amino acids with the Cys156—Cys162 disulfide. Studies in a pH gradient showed that the diameter of the APSR decreased progressively with acidic pH. To crystallize the APSR for structure determination, we optimized conditions to generate a homogeneous and stable form of APSR by combining dynamic light scattering, ultracentrifugation, and electron paramagnetic resonance methods to analyze the various oligomeric states of the enzyme in varied environments

    Ser-634 and Ser-636 of Kaposi’s Sarcoma-Associated Herpesvirus RTA are Involved in Transactivation and are Potential Cdk9 Phosphorylation Sites

    Get PDF
    The replication and transcription activator (RTA) of Kaposi’s sarcoma-associated herpesvirus (KSHV), K-RTA, is a lytic switch protein that moderates the reactivation process of KSHV latency. By mass spectrometric analysis of affinity purified K-RTA, we showed that Thr-513 or Thr-514 was the primary in vivo phosphorylation site. Thr-513 and Thr-514 are proximal to the nuclear localization signal (527KKRK530) and were previously hypothesized to be target sites of Ser/Thr kinase hKFC. However, substitutions of Thr with Ala at 513 and 514 had no effect on K-RTA subcellular localization or transactivation activity. By contrast, replacement of Ser with Ala at Ser-634 and Ser-636 located in a Ser/Pro-rich region of K-RTA, designated as S634A/S636A, produced a polypeptide with ∼10 kDa shorter in molecular weight and reduced transactivation in a luciferase reporter assay relative to the wild type. In contrast to prediction, the decrease in molecular weight was not due to lack of phosphorylation because the overall Ser and Thr phosphorylation state in K-RTA and S634A/S636A were similar, excluding that Ser-634 or Ser-636 motif served as docking sites for consecutive phosphorylation. Interestingly, S634A/S636A lost ∼30% immuno-reactivity to MPM2, an antibody specific to pSer/pThr-Pro motif, indicating that 634SPSP637 motif was in vivo phosphorylated. By in vitro kinase assay, we showed that K-RTA is a substrate of CDK9, a Pro-directed Ser/Thr kinase central to transcriptional regulation. Importantly, the capability of K-RTA in associating with endogenous CDK9 was reduced in S634A/S636A, which suggested that Ser-634 and Ser-636 may be involved in CDK9 recruitment. In agreement, S634A/S636A mutant exhibited ∼25% reduction in KSHV lytic cycle reactivation relative to that by the wild type K-RTA. Taken together, our data propose that Ser-634 and Ser-636 of K-RTA are phosphorylated by host transcriptional kinase CDK9 and such a process contributes to a full transcriptional potency of K-RTA

    Antitumor Effect of Periplocin in TRAIL-Resistant Human Hepatocellular Carcinoma Cells through Downregulation of IAPs

    Get PDF
    Cortex periplocae is the dried root bark of Periploca sepium Bge., a traditional Chinese herb medicine. It contains high amounts of cardiac glycosides. Several cardiac glycosides have been reported to inhibit tumor growth or induce tumor cell apoptosis. We extracted and purified cortex periplocae and identified periplocin as the active ingredient that inhibited the growth of TNF-related apoptosis-inducing ligand-(TRAIL-) resistant hepatocellular carcinoma cells. The antitumor activity of periplocin was further increased by TRAIL cotreatment. Periplocin sensitized TRAIL-resistant HCC through the following two mechanisms. First, periplocin induced the expression of DR4 and FADD. Second, the cotreatment of TRAIL and periplocin suppressed several inhibitors of apoptosis (IAPs). Both mechanisms resulted in the activation of caspase 3, 8, and 9 and led to cell apoptosis. In addition, intraperitoneal injection (IP) of periplocin repressed the growth of hepatocellular carcinoma (HCC) in xenograft tumor model in mice. In summary, periplocin sensitized TRAIL-resistant HCC cells to TRAIL treatment and resulted in tumor cell apoptosis and the repression of tumor growth in vivo

    Beating the channel capacity limit for linear photonic superdense coding

    Full text link
    Dense coding is arguably the protocol that launched the field of quantum communication. Today, however, more than a decade after its initial experimental realization, the channel capacity remains fundamentally limited as conceived for photons using linear elements. Bob can only send to Alice three of four potential messages owing to the impossibility of carrying out the deterministic discrimination of all four Bell states with linear optics, reducing the attainable channel capacity from 2 to log_2 3 \approx 1.585 bits. However, entanglement in an extra degree of freedom enables the complete and deterministic discrimination of all Bell states. Using pairs of photons simultaneously entangled in spin and orbital angular momentum, we demonstrate the quantum advantage of the ancillary entanglement. In particular, we describe a dense-coding experiment with the largest reported channel capacity and, to our knowledge, the first to break the conventional linear-optics threshold. Our encoding is suited for quantum communication without alignment and satellite communication.Comment: Letter: 6 pages, 4 figures. Supplementary Information: 4 pages, 1 figur

    Korean Red Ginseng Improves Blood Pressure Stability in Patients with Intradialytic Hypotension

    Get PDF
    Introduction. Intradialytic hypotension (IDH) is a common complication during hemodialysis which may increase mortality risks. Low dose of Korean red ginseng (KRG) has been reported to increase blood pressure. Whether KRG can improve hemodynamic stability during hemodialysis has not been examined. Methods. The 8-week study consisted of two phases: observation phase and active treatment phase. According to prehemodialysis blood pressure (BP), 38 patients with IDH were divided into group A (BP ≥ 140/90 mmHg, n = 18) and group B (BP < 140/90 mmHg, n = 20). Patients were instructed to chew 3.5 gm KRG slices at each hemodialysis session during the 4-week treatment phase. Blood pressure changes, number of sessions disturbed by symptomatic IDH, plasma levels of vasoconstrictors, blood biochemistry, and adverse effects were recorded. Results. KRG significantly reduced the degree of blood pressure drop during hemodialysis (P < 0.05) and the frequency of symptomatic IDH (P < 0.05). More activation of vasoconstrictors (endothelin-1 and angiotensin II) during hemodialysis was found. The postdialytic levels of endothelin-1 and angiotensin II increased significantly (P < 0.01). Conclusion. Chewing KRG renders IDH patients better resistance to acute BP reduction during hemodialysis via activation of vasoconstrictors. Our results suggest that KRG could be an adjuvant treatment for IDH

    Comparison of Skull Motions in Six Degrees of Freedom Between Two Head Supports During Frameless Radiosurgery by CyberKnife

    Get PDF
    Introduction: Maintaining immobilization to minimize skull motion is important during frameless radiosurgery. This study aimed to compare the intrafractional skull motions between two head supports.Methods: With 6D skull tracking system, 4,075 image records from 45 patients receiving radiosurgery by CyberKnife were obtained. Twenty-three patients used TIMO head supports (CIVCO) (Group A) and twenty-two patients used Silverman head supports (CIVCO) with MoldCare cushions (ALCARE) (Group B). The skull motions in X (superior-inferior), Y (right-left), Z (anterior-posterior) axes, 3D (three-dimensional) vector, Roll, Pitch and Yaw between the two groups were compared and the margins of planning target volume were estimated.Results: The translational motions in Group A were similar in three axes at initial but became different after 10 min, and those in Group B were less prominent in the Y axis. The rotational errors in Group A were most obvious in Yaw, but those in Group B were stationary in three axes. The motions in the X axis, 3D vector, Pitch and Yaw in Group B were significantly smaller than those in Group A; conversely, the motions in the Z axis in Group B were larger. To cover the 95% confidence intervals, margins of 0.77, 0.79, and 0.40 mm in the X, Y, and Z axes, respectively, were needed in Group A, and 0.69, 0.50, and 0.51 mm were needed in Group B.Conclusions: Both head supports could provide good immobilization during the frameless radiosurgery. Silverman head support with MoldCare cushion was better than TIMO head support in the superior-inferior direction, 3D vector, Pitch and Yaw axes, but worse in the anterior-posterior direction

    Examination of effects of GSK3β phosphorylation, β-catenin phosphorylation, and β-catenin degradation on kinetics of Wnt signaling pathway using computational method

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent experiments have explored effects of activities of kinases other than the well-studied GSK3β, in wnt pathway signaling, particularly at the level of β-catenin. It has also been found that the kinase PKA attenuates β-catenin degradation. However, the effects of these kinases on the level and degradation of β-catenin and the resulting downstream transcription activity remain to be clarified. Furthermore, the effect of GSK3β phosphorylation on the β-catenin level has not been examined computationally. In the present study, the effects of phosphorylation of GSK3β and of phosphorylations and degradation of β-catenin on the kinetics of the wnt signaling pathway were examined computationally.</p> <p>Methods</p> <p>The well-known computational Lee-Heinrich kinetic model of the wnt pathway was modified to include these effects. The rate laws of reactions in the modified model were solved numerically to examine these effects on β-catenin level.</p> <p>Results</p> <p>The computations showed that the β-catenin level is almost linearly proportional to the phosphorylation activity of GSK3β. The dependence of β-catenin level on the phosphorylation and degradation of free β-catenin and downstream TCF activity can be analyzed with an approximate, simple function of kinetic parameters for added reaction steps associated with effects examined, rationalizing the experimental results.</p> <p>Conclusion</p> <p>The phosphorylations of β-catenin by kinases other than GSK3β involve free unphorphorylated β-catenin rather than GSK3β-phosphorylated β-catenin*. In order to account for the observed enhancement of TCF activity, the β-catenin dephosphorylation step is essential, and the kinetic parameters of β-catenin phosphorylation and degradation need to meet a condition described in the main text. These findings should be useful for future experiments.</p

    Treatment results for hypopharyngeal cancer by different treatment strategies and its secondary primary- an experience in Taiwan

    Get PDF
    <p>Abstract</p> <p>Purpose</p> <p>The aim of this study was to evaluate treatment results in our hypopharyngeal cancer patients.</p> <p>Patients and Methods</p> <p>A total of three hundred and ninety five hypopharyngeal cancer patients received radical treatment at our hospital; 96% were male. The majority were habitual smokers (88%), alcohol drinkers (73%) and/or betel quid chewers (51%). All patients received a CT scan or MRI for tumor staging before treatment. The stage distribution was stage I: 2 (0.5%); stage II: 22 (5.6%); stage III: 57 (14.4%) and stage IV: 314 (79.5%). Radical surgery was used first in 81 patients (20.5%), and the remaining patients (79.5%) received organ preservation-intended treatment (OPIT). In the OPIT group, 46 patients received radiotherapy alone, 156 patients received chemotherapy followed by radiotherapy (CT/RT) and 112 patients received concomitant chemo-radiotherapy (CCRT).</p> <p>Results</p> <p>The five-year overall survival rates for stages I/II, III and IV were 49.5%, 47.4% and 18.6%, respectively. There was no significant difference in overall and disease-specific survival rates between patients who received radical surgery first and those who received OPIT. In the OPIT group, CCRT tended to preserve the larynx better (p = 0.088), with three-year larynx preservation rates of 44.8% for CCRT and 27.2% for CT/RT. Thirty-seven patients developed a second malignancy, with an annual incidence of 4.6%.</p> <p>Conclusions</p> <p>There was no survival difference between OPIT and radical surgery in hypopharyngeal cancer patients at our hospital. CCRT may offer better laryngeal preservation than RT alone or CT/RT. However, prospective studies are still needed to confirm this finding. Additionally, second primary cancers are another important issue for hypopharyngeal cancer management.</p
    corecore