23,920 research outputs found

    Thermodynamic properties and shear viscosity over entropy density ratio of nuclear fireball in a quantum-molecular dynamics model

    Full text link
    Thermodynamic and transport properties of nuclear fireball created in the central region of heavy-ion collisions below 400 MeV/nucleon are investigated within the isospin-dependent quantum molecular dynamic (IQMD) model. These properties including the density, temperature, chemical potential, entropy density (ss) and shear viscosity (η\eta), are calculated by a generalized hot Thomas Fermi formulism and a parameterized function, which was developed by Danielewicz. As the collision goes on, a transient minimal η/s=5/4π10/4π\eta/s=5/4\pi-10/4\pi occurs in the largest compression stage. Besides, the relationship of η/s\eta/s to temperature (TT) in the freeze-out stage displays a local minimum which is about 9-20 times 1/4π1/4\pi around TT = 8-12 MeV, which can be argued as indicative of a liquid gas phase transition. In addition, the influences of nucleon-nucleon (NN) cross section (σNN\sigma_{NN}) and symmetry energy coefficient (CsC_{s}) are also discussed, and it is found that the results are sensitive to σNN\sigma_{NN} but not to CsC_{s}.Comment: 10 pages, 13 figures; Phys. Rev. C (in press) (x-axis of Fig.1 is corrected

    Pygmy and Giant Dipole Resonances by Coulomb Excitation using a Quantum Molecular Dynamics model

    Full text link
    Pygmy and Giant Dipole Resonance (PDR and GDR) in Ni isotopes have been investigated by Coulomb excitation in the framework of the Isospin-dependent Quantum Molecular Dynamics model (IQMD). The spectra of γ\gamma rays are calculated and the peak energy, the strength and Full Width at Half Maximum (FWHM) of GDR and PDR have been extracted. Their sensitivities to nuclear equation of state, especially to its symmetry energy term are also explored. By a comparison with the other mean-field calculations, we obtain the reasonable values for symmetry energy and its slope parameter at saturation, which gives an important constrain for IQMD model. In addition, we also studied the neutron excess dependence of GDR and PDR parameters for Ni isotopes and found that the energy-weighted sum rule (EWSR) PDRm1/GDRm1PDR_{m_1}/GDR_{m_1}% increases linearly with the neutron excess.Comment: 8 pages, 12 figure

    Excitation Energy as a Basic Variable to Control Nuclear Disassembly

    Get PDF
    Thermodynamical features of Xe system is investigated as functions of temperature and freeze-out density in the frame of lattice gas model. The calculation shows different temperature dependence of physical observables at different freeze-out density. In this case, the critical temperature when the phase transition takes place depends on the freeze-out density. However, a unique critical excitation energy reveals regardless of freeze-out density when the excitation energy is used as a variable insteading of temperature. Moreover, the different behavior of other physical observables with temperature due to different ρf\rho_f vanishes when excitation energy replaces temperature. It indicates that the excitation energy can be seen as a more basic quantity to control nuclear disassembly.Comment: 3 pages, 2 figures, Revte

    Influence of statistical sequential decay on isoscaling and symmetry energy coefficient in a GEMINI simulation

    Full text link
    Extensive calculations on isoscaling behavior with the sequential-decay model gemini are performed for the medium-to-heavy nuclei in the mass range A = 60-120 at excitation energies up to 3 MeV/nucleon. The comparison between the products after the first-step decay and the ones after the entire-steps decay demonstrates that there exists a strong sequential decay effect on the final isoscaling parameters and the apparent temperature. Results show that the apparent symmetry energy coefficient γapp\gamma_{app} does not reflect the initial symmetry energy coefficient CsymC_{sym} embedded in the mass calculation in the present GEMINI model.Comment: 4 pages, 3 figures, 1 tabl
    corecore