153 research outputs found
Position prediction of underground moving targets in mines based on IPSO-LSTM
Improving the positioning accuracy of underground personnel can not only strengthen mine safety monitoring, but also increase the speed of rescue, thus ensuring the life safety of underground personnel to the maximum extent.This paper proposes a positioning model based on IPSO-LSTM for position prediction of underground moving targets in response to the problem of existing ranging algorithms which are affected by the on-site environment, resulting in insufficient positioning accuracy.This article uses LSTM to build a fingerprint positioning model.It collects distance information through the UWB wireless module to build a distance-position fingerprint relationship database, which is used to train the PSO-LSTM model.Then we use the trained model to predict target trajectories.We compared four improvement strategies on PSO including random initialization of population position by chaotic mapping, nonlinear inertia weight reduction and fitness function optimization.Experiments show that the improved PSO optimization algorithm in this paper exhibit fast convergence speed and good robustness.In order to verify the positioning effect of IPSO-LSTM, we compared the IPSO-LSTM model with the Chan algorithm, PSO-LSTM model, LSTM neural network, SSA-LSTM model and GWO-LSTM.The average positioning error is used as the evaluation index.The results show that the average positioning error of the IPSO-LSTM positioning model proposed in this study is 30mm, which is 76% higher than the traditional Chan algorithm, 49% higher than the LSTM, and 24% higher than the PSO-LSTM model.In order to reduce large local errors, we used median filtering to process input information, further improving positioning accuracy.This study offers references for improving the accuracy and stability of the existing underground moving target positioning system
Transcriptional activation of follistatin by Nrf2 protects pulmonary epithelial cells against silica nanoparticle-induced oxidative stress
Silica nanoparticles (SiO2 NPs) cause oxidative stress in respiratory system. Meanwhile, human cells launch adaptive responses to overcome SiO2 NP toxicity. However, besides a few examples, the regulation of SiO2 NP-responsive proteins and their functions in SiO2 NP response remain largely unknown. In this study, we demonstrated that SiO2 NP induced the expression of follistatin (FST), a stress responsive gene, in mouse lung tissue as well as in human lung epithelial cells (A549). The levels of Ac-H3(K9/18) and H3K4me2, two active gene markers, at FST promoter region were significantly increased during SiO2 NP treatment. The induction of FST transcription was mediated by the nuclear factor erythroid 2-related factor 2 (Nrf2), as evidenced by the decreased FST expression in Nrf2-deficient cells and the direct binding of Nrf2 to FST promoter region. Down-regulation of FST promoted SiO2 NP-induced apoptosis both in cultured cells and in mouse lung tissue. Furthermore, knockdown of FST increased while overexpression of FST decreased the expression level of NADPH oxidase 1 (NOX1) and NOX5 as well as the production of cellular reactive oxygen species (ROS). Taken together, these findings demonstrated a protective role of FST in SiO2 NP-induced oxidative stress and shed light on the interaction between SiO2 NPs and biological systems
Governing effects of melt viscosity on fire performances of polylactide and its fire-retardant systems
Extreme flammability of polylactide (PLA) has restricted its real-world applications. Traditional research only focuses on developing new effective fire retardants for PLA without considering the effect of melt viscosity on its fire performances. To fill the knowledge gap, a series of PLA matrices of varied melt flow index (MFI) with and without fire retardants are chosen to examine how melt viscosity affects its fire performances. Our results show that the MFI has a governing impact on fire performances of pure PLA and its fire-retardant systems if the samples are placed vertically during fire testing. PLA with higher MFI values achieves higher limiting oxygen index (LOI) values, and a lower loading level of fire retardants is required for PLA to pass a UL-94 V-0 rating. This work unveils the correlation between melt viscosity and their fire performance and offers a practical guidance for creating flame retardant PLA to extend its applications
Outlook on ecologically improved composites for aviation interior and secondary structures
Today, mainly man-made materials such as carbon and glass fibres are used to produce composite parts in aviation. Renewable materials such as natural fibres or bio-sourced resin systems have not found their way into aviation, yet. The project ECO-COMPASS aims to evaluate the potential applications of ecologically improved composite materials in the aviation sector in an international collaboration of Chinese and European partners. Natural fibres such as flax and ramie will be used for different types of reinforcements and sandwich cores. Furthermore, the bio-based epoxy resins to substitute bisphenol-A based epoxy resins in secondary structures are under investigation. Adapted material protection technologies to reduce environmental influence and to improve fire resistance are needed to fulfil the demanding safety requirements in aviation. Modelling and simulation of chosen eco-composites aims for an optimized use of materials while a life cycle assessment aims to prove the ecological advantages compared to synthetic state-of-the-art materials. In this paper, the status of selected ecologically improved materials will be presented with an outlook for potential application in interior and secondary structures
Mechanism of enhancement of intumescent fire retardancy by metal acetates in polypropylene
The effects of cobalt acetate (CoAc), manganese acetate (MnAc), nickel acetate (NiAc) and zincacetate (ZnAc) as fire retardant additive in intumescent polypropylene (PP) formulations containing PP/ammonium polyphosphate (APP)/pentaerythritol (PER) are reported. The limiting oxygen index (LOI) and vertical burning (UL94) tests and cone calorimetry were used to quantify the enhancement. Environmental chamber rheometry, thermal gravimetric analysis and the morphology of the residual char were used to investigate the mechanism of enhancement. The incorporation of small quantities of metal acetates had a significant influence on the fire behaviour. As an example, 0.7 wt% MnAc improved the UL 94 rating of PP/APP+PER (mass ratio 100/25, with APP/PER=3/1) sample from V-2 to V-0, while 1 wt% MnAc reduced the peak heat release rate and the total heat release by 18% and 12% in the cone calorimeter. Rheological data, cone
calorimetry, and photographs of the residual char showed how the fire retardancy of the systems were affected by the melt viscosity, which depended on the loading of metal acetate. During thermal decomposition, the metal acetates promote the crosslinking of the polymer and the fire retardant, reinforcing the protective intumescent layer. While, the effect is most potent at the optimal metal loadings. At higher MnAc loadings, the benefit of a stronger char is overwhelmed
by the adverse effect of crosslinking on the transition char layer. Thus, this paper offers a new
insight into the mechanism of the intumescent fire retarded PP system
Inhibition of Protein Phosphatase 2A Sensitizes Mucoepidermoid Carcinoma to Chemotherapy via the PI3K-AKT Pathway in Response to Insulin Stimulus
Background/Aims: Protein phosphatase 2A (PP2A) is a ubiquitous serine/threonine phosphatase that mediates cell cycle regulation and metabolism. Mounting evidence has indicated that PP2A inhibition exhibits considerable anticancer potency in multiple types of human cancers. However, the efficacy of PP2A inhibition remains unexplored in mucoepidermoid carcinoma (MEC), especially in locally advanced and metastatic cases with limited systemic treatment. In this study, we demonstrated the therapeutic potency of LB100 in mucoepidermoid carcinoma. Methods: In this study, the expression of PP2A was evaluated using immunohistochemical (IHC) staining. The effects associated with LB100 alone and in combination with cisplatin for the treatment of mucoepidermoid carcinoma were investigated both in vitro, regarding metabolism, proliferation, and migration, and in vivo in a mucoepidermoid carcinoma xenograft model. In addition, with LB100 treatment and in response to an insulin stimulus, the expression levels and phosphorylation levels of targets in the PI3K-AKT pathway were determined using western blot analysis and immunoblotting. Results: The expression of protein phosphatase 2A was significantly upregulated in the clinical specimens of high-grade MECs compared with those of low-/medium-grade MECs and normal controls. In this article, we report that a small molecule PP2A inhibitor, LB100, decreased cellular viability and glycolytic activity and induced G2/M cell cycle arrest. Importantly, LB100 enhanced the efficacy of cisplatin in mucoepidermoid carcinoma cells both in vitro and in vivo. PP2A inhibition by LB100 increased the phosphorylation of insulin receptor substrate 1(IRS-1) on serine residues, downregulated the expression of phosphatidylinositol 3-kinase (PI3K) p110 alpha subunit and dephosphorylated AKT at Ser473 and Thr308 in mucoepidermoid carcinoma cells in response to insulin stimulus. Conclusion: These results highlight the translational potential of PP2A inhibition to synergize with cisplatin in mucoepidermoid carcinoma treatment
Synthesis of Zinc Phosphonated Poly(ethylene imine) and Its Fire-Retardant Effect in Low-Density Polyethylene
A novel oligomeric intumescent fire-retardant chelate, zinc phosphonated poly(ethylene imine) (Zn-PEIP), with a variable Zn2+ loading, was synthesized. The chemical structure of Zn-PEIP was confirmed by FTIR, 13C NMR, and 31P NMR spectroscopies. The thermal behavior and fire retardancy of low-density polyethylene (LDPE) containing 25 wt % Zn-PEIPs with different amounts of Zn2+ were investigated by thermogravimetric analysis (TGA), limiting oxygen index (LOI) measurements, and cone calorimetry. The TGA results showed that higher concentrations of Zn2+ improved the thermal stability and increased the residue yield of LDPE. However, the data from the LOI and cone calorimetry tests showed that there is an optimum concentration of Zn2+ for the best fire-retardancy performance of LDPE. This behavior is ascribed to the high cross-link density resulting from zinc bridges, preventing normal swelling of the intumescent system. The surface morphology of the char was characterized by digital photography and scanning electron microscopy (SEM). This confirmed the optimum intumescence and coherent and strong barrier layer formation at an intermediate Zn2+ loading
REPORTAJE CARMELO ARTILES BOLAÑOS. INFECAR [Material gráfico]
Copia digital. Madrid : Ministerio de Educación, Cultura y Deporte, 201
Large expert-curated database for benchmarking document similarity detection in biomedical literature search
Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe
- …