313 research outputs found

    Design of a large dynamic range readout unit for the PSD detector of DAMPE

    Full text link
    A large dynamic range is required by the Plastic Scintillator Detector (PSD) of DArk Matter Paricle Explorer (DAMPE), and a double-dynode readout has been developed. To verify this design, a prototype detector module has been constructed and tested with cosmic rays and heavy ion beams. The results match with the estimation and the readout unit could easily cover the required dynamic range

    HSV-1 miR-H6 Inhibits HSV-1 Replication and IL-6 Expression in Human Corneal Epithelial Cells In Vitro

    Get PDF
    HSV-1 infection in the cornea could lead to blindness. The infected cell polypeptide 4 (ICP4) of herpes simplex virus 1 (HSV-1) is a regulator of viral transcription that is required for productive infection. It has been previously demonstrated that miR-H6 encoded from HSV-1 genome targets ICP4 to help maintain latency. In this study, synthesized miR-H6 mimics were transfected into HSV-1-infected human cornea epithelial (HCE) cells. The inhibition of HSV-1 replication and viral ICP4 expression in miR-H6-transfected HCE was confirmed by plaque assay, immunofluorescence, and Western blot. Compared to nontransfection or mock, miR-H6 produced a low-titer HSV-1 and weak ICP4 expression. In addition, miR-H6 can decrease the interleukin 6 released into the medium, which was determined by ELISA. Taken together, the data suggests that miR-H6 targeting of ICP4 inhibits HSV-1 productive infection and decreases interleukin 6 production in HCE, and this may provide an approach to prevent HSV-1 lytic infection and inhibit corneal inflammation

    Number-Theoretic Transform Architecture for Fully Homomorphic Encryption from Hypercube Topology

    Get PDF
    This paper introduces a high-performance and scalable hardware architecture designed for the Number-Theoretic Transform (NTT), a fundamental component extensively utilized in lattice-based encryption and fully homomorphic encryption schemes. The underlying rationale behind this research is to harness the advantages of the hypercube topology. This topology serves to significantly diminish the volume of data exchanges required during each iteration of the NTT, reducing it to a complexity of Ω(logN)\Omega(\log N). Concurrently, it enables the parallelization of NN processing elements. This reduction in data exchange operations is of paramount importance. It not only facilitates the establishment of interconnections among the NN processing elements but also lays the foundation for the development of a high-performance NTT design. This is particularly valuable when dealing with large values of NN
    corecore