20 research outputs found

    Consistency between dynamical and thermodynamical stabilities for perfect fluid in f(R)f(R) theories

    Full text link
    We investigate the stability criterions for perfect fluid in f(R)f(R) theories which is an important generalization of general relativity. Firstly, using Wald's general variation principle, we recast Seifert's work and obtain the dynamical stability criterion. Then using our generalized thermodynamical criterion, we obtain the concrete expressions of the criterion. We show that the dynamical stability criterion is exactly the same as the thermodynamical stability criterion. This result suggests that there is an inherent connection between the thermodynamics and gravity in f(R)f(R) theories. It should be pointed out that using the thermodynamical method to determine the stability for perfect fluid is simpler and more directly than the dynamical method.Comment: 18page

    Thermodynamical stability for perfect fluid

    Full text link
    According to maximum entropy principle, it has been proved that the gravitational field equations could be derived by the extrema of total entropy for perfect fluid, which implies that thermodynamic relations contain information of gravity. In this manuscript, we obtain a criterion for thermodynamical stability of an adiabatic, self-gravitating perfect fluid system by the second variation of total entropy. We show, for Einstein's gravity with spherical symmetry spacetime, that the criterion is consistent with that for dynamical stability derived by Chandrasekhar and Wald. We also find that the criterion could be applied to cases without spherical symmetry, or under general perturbations. The result further establishes the connection between thermodynamics and gravity.Comment: 10 page

    Gravito-electromagnetic perturbations of MOG black holes with a cosmological constant: Quasinormal modes and Ringdown waveforms

    Full text link
    In this paper, we present black hole solutions with a cosmological constant in the MOG theory, where the strength of the gravitational constant is determined by G=GN(1+α)G = G_\text{N}(1+\alpha). We derive the master equations for gravito-electromagnetic perturbations and numerically solve for the Quasinormal Mode (QNM) spectrum and the ringdown waveforms. Our results show that increasing either the MOG parameter α\alpha or the cosmological constant Λ\Lambda leads to a decrease in both the real and imaginary parts of the QNM frequencies for electromagnetic and gravitational modes, compared to standard Schwarzschild-de Sitter (S-dS) or MOG black holes, respectively. Meanwhile, the result indicates that in the MOG-de Sitter spacetime, the frequencies for electromagnetic and gravitational modes display strict isospectrality, and exhibit the same ringdown waveforms. Our findings have implications for the ringdown phase of mergers involving massive compact objects, which is of particular relevance given the recent detections of gravitational waves by LIGO.Comment: 16pages, 6 figure

    QNMs of slowly rotating Einstein-bumblebee Black Hole

    Full text link
    We have studied the quasinormal modes (QNMs) of a slowly rotating black hole with Lorentz-violating parameter in Einstein-bumblebee gravity. We analyse the slow rotation approximation of the rotating black hole in the Einstein-bumblebee gravity, and obtain the master equations for scalar perturbation, vector perturbation and axial gravitational perturbation, respectively. Using the matrix method and the continuous fraction method, we numerically calculate the QNM frequencies. In particular, for scalar field, it shows that the QNMs up to the second order of rotation parameter have higher accuracy. The numerical results show that, for both scalar and vector fields, the Lorentz-violating parameter has a significant effect on the imaginary part of the QNM frequencies, while having a relatively smaller impact on the real part of the QNM frequencies. But for axial gravitational perturbation, the effect of increasing the Lorentz-violating parameter â„“\ell is similar to that of increasing the rotation parameter a~\tilde{a}.Comment: 16 pages, 6 figure

    The Quasinormal Modes and Isospectrality of Bardeen (Anti-) de Sitter Black Holes

    Full text link
    Black holes (BHs) exhibiting coordinate singularities but lacking essential singularities throughout the entire spacetime are referred to as regular black holes (RBHs). The initial formulation of RBHs was presented by Bardeen, who considered the Einstein equation coupled with a nonlinear electromagnetic field. In this study, we investigate the gravitational perturbations, including the axial and polar sectors, of the Bardeen (Anti-) de Sitter black holes. We derive the master equations with source terms for both axial and polar perturbations, and subsequently compute the quasinormal modes (QNMs) through numerical methods. For the Bardeen de Sitter black hole, we employ the 6th-order WKB approach. The numerical results reveal that the isospectrality is broken in this case. Conversely, for Bardeen Anti-de Sitter black holes, the QNM frequencies are calculated by using the HH method.Comment: 12 pages, 6 figures, 4 table

    Imprints of dark matter on gravitational ringing of supermassive black holes

    Full text link
    Gravitational waves emitted from the gravitational ringing of supermassive black holes are important targets to test general relativity and probe the matter environment surrounding such black holes. The main components of the ringing waveform are black hole quasi-normal modes. In this paper, we study the effects of the dark matter halos with three different density profiles on the gravitational polar (even-parity) perturbations of a supermassive black hole. For this purpose, we first consider modified Schwarzschild spacetime with three different dark matter profiles and derive the equation of motion of the polar perturbations of the supermassive black hole. It is shown that by ignoring the dark matter perturbations, a Zerilli-like master equation with a modified potential for the polar perturbation can be obtained explicitly. Then we calculate the complex frequencies of the quasi-normal modes of the supermassive black hole in the dark matter halos. The corresponding gravitational wave spectra with the effects of the dark matter halos and their detectability have also been discussed.Comment: 15 pages, 6 figures, 4 tables. arXiv admin note: substantial text overlap with arXiv:2111.04966; version appeared in Physics of the Dark Univers
    corecore