1,898 research outputs found

    Electromagnetic counterparts of high-frequency gravitational waves having additional polarization states: distinguishing and probing tensor-mode, vector-mode and scalar-mode gravitons

    Full text link
    GWs from extra dimensions, very early universe, and some high-energy astrophysical process, might have at most six polarizations: plus- and cross-type (tensor-mode gravitons), x-, y-type (vector-mode), and b-, l-type (scalar-mode). Peak or partial peak regions of some of such GWs are just distributed in GHz or higher frequency band, which would be optimal band for electromagnetic(EM) response. In this paper we investigate EM response to such high-frequency GWs(HFGWs) having additional polarizations. For the first time we address:(1)concrete forms of analytic solutions for perturbed EM fields caused by HFGWs having all six possible polarizations in background stable EM fields; (2)perturbed EM signals of HFGWs with additional polarizations in three-dimensional-synchro-resonance-system(3DSR system) and in galactic-extragalactic background EM fields. These perturbative EM fields are actually EM counterparts of HFGWs, and such results provide a novel way to simultaneously distinguish and display all possible six polarizations. It is also shown: (i)In EM response, pure cross-, x-type and pure y-type polarizations can independently generate perturbative photon fluxes(PPFs, signals), while plus-, b- and l-type polarizations produce PPFs in different combination states. (ii) All such six polarizations have separability and detectability. (iii)In EM response to HFGWs from extra-dimensions, distinguishing and displaying different polarizations would be quite possible due to their very high frequencies, large energy densities and special properties of spectrum. (iv)Detection band(10^8 to 10^12 Hz or higher) of PPFs by 3DSR and observation range(7*10^7 to 3*10^9 Hz) of PPFs by FAST (Five-hundred-meter-Aperture-Spherical Telescope, China), have a certain overlapping property, so their coincidence experiments will have high complementarity.Comment: 27 pages, 16 figure

    Collimated directional emission from a peanut-shaped microresonator

    Full text link
    Collimated directional emission is essentially required an asymmetric resonant cavity. In this paper, we theoretically investigate a type of peanut-shaped microcavity which can support highly directional emission with the emission divergence as small as 2.5o. The mechanism of the collimated emission is explained with the short-term ray trajectory and the intuitive lens model in detail. Wave simulation also confirms these results. This extremely narrow divergence of the emission holds a great potential in highly collimated lasing from on-chip microcavities

    The ultra-low-frequency shear modes of 2-4 layer graphenes observed in their scroll structures at edges

    Full text link
    The in-plane shear modes between neighbor-layers of 2-4 layer graphenes (LGs) and the corresponding graphene scrolls rolled up by 2-4LGs were investigated by Raman scattering. In contrast to that just one shear mode was observed in 3-4LGs, all the shear modes of 3-4LGs were observed in 3-4 layer scrolls (LSs), whose frequencies agree well with the theoretical predication by both a force-constant model and a linear chain model. In comparison to the broad width (about 12cm1^{-1}) for the G band in graphite, all the shear modes exhibit an intrinsic line width of about 1.0 cm1^{-1}. The local electronic structures dependent on the local staking configurations enhance the intensity of the shear modes in corresponding 2-4LSs zones, which makes it possible to observe all the shear modes. It provides a direct evidence that how the band structures of FLGs can be sensitive to local staking configurations. This result can be extended to n layer graphene (n > 4) for the understanding of the basic phonon properties of multi-layer graphenes. This observation of all-scale shear modes can be foreseen in other 2D materials with similar scroll structures.Comment: 14 pages, 5 figure
    corecore