589 research outputs found

    Ginzburg-Landau approximation for self-sustained oscillators weakly coupled on complex directed graphs

    Get PDF
    A normal form approximation for the evolution of a reaction-diffusion system hosted on a directed graph is derived, in the vicinity of a supercritical Hopf bifurcation. Weak diffusive couplings are assumed to hold between adjacent nodes. Under this working assumption, a Complex Ginzburg-Landau equation (CGLE) is obtained, whose coefficients depend on the parameters of the model and the topological characteristics of the underlying network. The CGLE enables one to probe the stability of the synchronous oscillating solution, as displayed by the reaction-diffusion system above Hopf bifurcation. More specifically, conditions can be worked out for the onset of the symmetry breaking instability that eventually destroys the uniform oscillatory state. Numerical tests performed for the Brusselator model confirm the validity of the proposed theoretical scheme. Patterns recorded for the CGLE resemble closely those recovered upon integration of the original Brussellator dynamics

    Hopping in the crowd to unveil network topology

    Get PDF
    We introduce a nonlinear operator to model diffusion on a complex undirected network under crowded conditions. We show that the asymptotic distribution of diffusing agents is a nonlinear function of the nodes' degree and saturates to a constant value for sufficiently large connectivities, at variance with standard diffusion in the absence of excluded-volume effects. Building on this observation, we define and solve an inverse problem, aimed at reconstructing the a priori unknown connectivity distribution. The method gathers all the necessary information by repeating a limited number of independent measurements of the asymptotic density at a single node that can be chosen randomly. The technique is successfully tested against both synthetic and real data, and shown to estimate with great accuracy also the total number of nodes

    Global topological control for synchronized dynamics on networks

    Full text link
    A general scheme is proposed and tested to control the symmetry breaking instability of a homogeneous solution of a spatially extended multispecies model, defined on a network. The inherent discreteness of the space makes it possible to act on the topology of the inter-nodes contacts to achieve the desired degree of stabilization, without altering the dynamical parameters of the model. Both symmetric and asymmetric couplings are considered. In this latter setting the web of contacts is assumed to be balanced, for the homogeneous equilibrium to exist. The performance of the proposed method are assessed, assuming the Complex Ginzburg-Landau equation as a reference model. In this case, the implemented control allows one to stabilize the synchronous limit cycle, hence time-dependent, uniform solution. A system of coupled real Ginzburg-Landau equations is also investigated to obtain the topological stabilization of a homogeneous and constant fixed point

    Stochastic Turing Patterns on a Network

    Full text link
    The process of stochastic Turing instability on a network is discussed for a specific case study, the stochastic Brusselator model. The system is shown to spontaneously differentiate into activator-rich and activator-poor nodes, outside the region of parameters classically deputed to the deterministic Turing instability. This phenomenon, as revealed by direct stochastic simulations, is explained analytically, and eventually traced back to the finite size corrections stemming from the inherent graininess of the scrutinized medium.Comment: The movies referred to in the paper are provided upon request. Please send your requests to Duccio Fanelli ([email protected]) or Francesca Di Patti ([email protected]

    Can a microscopic stochastic model explain the emergence of pain cycles in patients?

    Full text link
    A stochastic model is here introduced to investigate the molecular mechanisms which trigger the perception of pain. The action of analgesic drug compounds is discussed in a dynamical context, where the competition with inactive species is explicitly accounted for. Finite size effects inevitably perturb the mean-field dynamics: Oscillations in the amount of bound receptors spontaneously manifest, driven by the noise which is intrinsic to the system under scrutiny. These effects are investigated both numerically, via stochastic simulations and analytically, through a large-size expansion. The claim that our findings could provide a consistent interpretative framework to explain the emergence of cyclic behaviors in response to analgesic treatments, is substantiated.Comment: J. Stat. Mech. (Proceedings UPON2008
    • ā€¦
    corecore