455 research outputs found
Effect of grain refinement on enhancing critical current density and upper critical field in undoped MgB2 ex-situ tapes
Ex-situ Powder-In-Tube MgB2 tapes prepared with ball-milled, undoped powders
showed a strong enhancement of the irreversibility field H*, the upper critical
field Hc2 and the critical current density Jc(H) together with the suppression
of the anisotropy of all of these quantities. Jc reached 104 A/cm2 at 4.2 K and
10 T, with an irreversibility field of about 14 T at 4.2 K, and Hc2 of 9 T at
25 K, high values for not-doped MgB2. The enhanced Jc and H* values are
associated with significant grain refinement produced by milling of the MgB2
powder, which enhances grain boundary pinning, although at the same time also
reducing the connectivity from about 12% to 8%. Although enhanced pinning and
diminished connectivity are in opposition, the overall influence of ball
milling on Jc is positive because the increased density of grains with a size
comparable with the mean free path produces strong electron scattering that
substantially increases Hc2, especially Hc2 perpendicular to the Mg and B
planes.Comment: 26 pages, 9 figures, submitted to J. Appl. Phy
Single spin-polarised Fermi surface in SrTiO thin films
The 2D electron gas (2DEG) formed at the surface of SrTiO(001) has
attracted great interest because of its fascinating physical properties and
potential as a novel electronic platform, but up to now has eluded a
comprehensible way to tune its properties. Using angle-resolved photoemission
spectroscopy with and without spin detection we here show that the band filling
can be controlled by growing thin SrTiO films on Nb doped SrTiO(001)
substrates. This results in a single spin-polarised 2D Fermi surface, which
bears potential as platform for Majorana physics. Based on our results it can
furthermore be concluded that the 2DEG does not extend more than 2 unit cells
into the film and that its properties depend on the amount of SrO at the
surface and possibly the dielectric response of the system
Hyperfine interaction in a quantum dot: Non-Markovian electron spin dynamics
We have performed a systematic calculation for the non-Markovian dynamics of
a localized electron spin interacting with an environment of nuclear spins via
the Fermi contact hyperfine interaction. This work applies to an electron in
the s -type orbital ground state of a quantum dot or bound to a donor impurity,
and is valid for arbitrary polarization p of the nuclear spin system, and
arbitrary nuclear spin I in high magnetic fields. In the limit of p=1 and
I=1/2, the Born approximation of our perturbative theory recovers the exact
electron spin dynamics. We have found the form of the generalized master
equation (GME) for the longitudinal and transverse components of the electron
spin to all orders in the electron spin--nuclear spin flip-flop terms. Our
perturbative expansion is regular, unlike standard time-dependent perturbation
theory, and can be carried-out to higher orders. We show this explicitly with a
fourth-order calculation of the longitudinal spin dynamics. In zero magnetic
field, the fraction of the electron spin that decays is bounded by the
smallness parameter \delta=1/p^{2}N, where N is the number of nuclear spins
within the extent of the electron wave function. However, the form of the decay
can only be determined in a high magnetic field, much larger than the maximum
Overhauser field. In general the electron spin shows rich dynamics, described
by a sum of contributions with non-exponential decay, exponential decay, and
undamped oscillations. There is an abrupt crossover in the electron spin
asymptotics at a critical dimensionality and shape of the electron envelope
wave function. We propose a scheme that could be used to measure the
non-Markovian dynamics using a standard spin-echo technique, even when the
fraction that undergoes non-Markovian dynamics is small.Comment: 22 pages, 8 figure
Observation of Wannier-Stark localization at the surface of BaTiO films by photoemission
Observation of Bloch oscillations and Wannier-Stark localization of charge
carriers is typically impossible in single-crystals, because an electric field
higher than the breakdown voltage is required. In BaTiO however, high
intrinsic electric fields are present due to its ferroelectric properties. With
angle-resolved photoemission we directly probe the Wannier-Stark localized
surface states of the BaTiO film-vacuum interface and show that this effect
extends to thin SrTiO overlayers. The electrons are found to be localized
along the in-plane polarization direction of the BaTiO film
Recent advances in searching c-Myc transcriptional cofactors during tumorigenesis
Background: The mechanism by which c-Myc exerts its oncogenic functions is not completely clear and different hypotheses are still under investigation. The knowledge of the capacity of c-Myc to bind exclusively E-box sequences determined the discrepancy between, on the one hand, genomic studies showing the binding of c-Myc to all active promoters and, on the other hand, the evidence that only 60% or less of the binding sites have E-box sequences. Main body: In this review, we provide support to the hypothesis that the cooperation of c-Myc with transcriptional cofactors mediates c-Myc-induced cellular functions. We produce evidence that recently identified cofactors are involved in c-Myc control of survival mechanisms of cancer cells. Conclusion: The identification of new c-Myc cofactors could favor the development of therapeutic strategies able to compensate the difficulty of targeting c-Myc
- …