3 research outputs found

    Surface Modified Low Cost Adsorbent in Malachite Green Scavenging, Malachite Green/Rhodamine B and Malachite Green/Rhodamine B/Cu2+ Composite Treatment

    Get PDF
    Modified Irvingia gabonensis nut waste (MIg) was used for malachite green (MG) removal from aqueous solution. Adsorption operational parameters such as pH, adsorbent load, concentration with contact time were investigated to establish the behavior of MIg for subsequent applications in a complex media. The potency of MIg in the effective treatment of binary and ternary mixture of MG/rhodamine B (RhB) dyes and MG/RhB/Cu2+ solution was also studied. Optimum MG adsorption was obtained at pH of 6.0. MG-MIg kinetics adsorption data was best described by the Pseudo second order kinetic model. MG adsorption onto MIg was predominantly onto a uniform site and the maximum monolayer adsorption capacity was obtained to be 250mg/g. MG and RhB synergistically aided the removal of each other both in binary and ternary solutions hence 99.99% removal was observed for the two dyes after treatment with MIg. Cu2+ showed no change in concentration after treatment with MIg

    Novel acid treated biomass: Applications in Cu2+ scavenging, Rhodamine B/Cu2+ binary solution and real textile effluent treatment

    No full text
    A novel adsorbent prepared from the waste of Irvingia gabonensis nut (ADN) was used for scavenging of Cu2+ from aqueous solution. Various adsorption operational parameters were investigated in order to establish the behavior of ADN before further studies. The efficacy of ADN in concurrent removal of rhodamine B (RhB) dye and Cu2+ in a binary solution of RhB/Cu2+ was also investigated. Finally the potency of ADN in the treatment of real textile effluent was ascertained. Optimum adsorption of Cu2+ occurred at pH of 5.5 and high temperature favored Cu2+ removal. Pseudo second order kinetic best described the uptake of Cu2+ onto ADN. Maximum monolayer adsorption capacity was obtained to be 103.09 mg/g. The Dubinin Radushkevich (D-R) isotherm as well as thermodynamic parameter suggests that adsorption of Cu2+ onto ADN was chemical in nature. Percentage removal of Cu2+ in single solution at optimum time was 94.70 % while synergistic effect of RhB moved this to 99.54 % removal in the binary solution. ADN was highly efficient for the removal of dye and other organic pollutants in the real textile effluent with 100 % removal of some organic pollutant

    Novel acid treated biomass: Applications in Cu2+ scavenging, Rhodamine B/Cu binary solution and real textile effluent treatment

    No full text
    A novel adsorbent prepared from the waste of Irvingia gabonensis nut (ADN) was used for scavenging of Cu2+ from aqueous solution. Various adsorption operational parameters were investigated in order to establish the behavior of ADN before further studies. The efficacy of ADN in concurrent removal of rhodamine B (RhB) dye and Cu in a binary solution of RhB/Cu2+ was also investigated. Finally the potency of ADN in the treatment of real textile effluent was ascertained. Optimum adsorption of Cu2+ occurred at pH of 5.5 and high temperature favoured Cu removal. Pseudo second order kinetic best described the uptake of Cu2+ onto ADN. Maximum monolayer adsorption capacity was obtained to be 103.09 mg/g. The Dubinin Radushkevich (D-R) isotherm as well as thermodynamic parameter suggests that adsorption of Cu2+ onto ADN was chemical in nature. Percentage removal of Cu2+ in single solution at optimum time was 94.70 % while synergistic effect of RhB moved this to 99.54 % removal in the binary solution. ADN was highly efficient for the removal of dye and other organic pollutants in the real textile effluent with 100 % removal of some organic pollutant
    corecore