1,942 research outputs found
Using Artificial Neural Networks to Produce High-Resolution Soil Property Maps
High-resolution maps of soil property are considered as the most important inputs for decision support and policy-making in agriculture, forestry, flood control, and environmental protection. Commonly, soil properties are mainly obtained from field surveys. Field soil surveys are generally time-consuming and expensive, with a limitation of application throughout a large area. As such, high-resolution soil property maps are only available for small areas, very often, being obtained for research purposes. In the chapter, artificial neural network (ANN) models were introduced to produce high-resolution maps of soil property. It was found that ANNs can be used to predict high-resolution soil texture, soil drainage classes, and soil organic content across landscape with reasonable accuracy and low cost. Expanding applications of the ANNs were also presented
(5,5′-DicarboxyÂbiphenyl-2,2′-dicarboxylÂato-κ2 O 2,O 2′)bisÂ(1,10-phenanthroline-κ2 N,N′)zinc(II) dihydrate
In the title compound, [Zn(C16H8O8)(C12H8N2)2]·2H2O, the ZnII atom is located on a twofold rotation axis and is six-coordinated by two O atoms from a 5,5′-dicarboxyÂbiphenyl-2,2′-dicarboxylÂate ligand and four N atoms from two 1,10-phenanthroline molÂecules in a distorted octaÂhedral geometry. The crystal structure involves O—H⋯O hydrogen bonds
Integrated gene-based and pathway analyses using UK Biobank data identify novel genes for chronic respiratory diseases
BackgroundChronic respiratory diseases have become a non-negligible cause of death globally. Although smoking and environmental exposures are primary risk factors for chronic respiratory diseases, genetic factors also play an important role in determining individual’s susceptibility to diseases. Here we performed integrated gene-based and pathway analyses to systematically illuminate the heritable characteristics of chronic respiratory diseases.MethodsUK (United Kingdom) Biobank is a very large, population-based prospective study with over 500,000 participants, established to allow detailed investigations of the genetic and nongenetic determinants of the diseases. Utilizing the GWAS-summarized data downloaded from UK Biobank, we conducted gene-based analysis to obtain associations of susceptibility genes with asthma, chronic obstructive pulmonary disease (COPD) and pneumonia using FUSION and MAGMA software. Across the identified susceptibility regions, functional annotation integrating multiple functional data sources was performed to explore potential regulatory mechanisms with INQUISIT algorithm. To further detect the biological process involved in the development of chronic respiratory diseases, we undertook pathway enrichment analysis with the R package (clusterProfiler).ResultsA total of 195 susceptibility genes were identified significantly associated with chronic respiratory diseases (Pbonferroni < 0.05), and 24/195 located out of known susceptibility regions (e.g. WDPCP in 2p15). Within the identified susceptibility regions, functional annotation revealed an aggregation of credible variants in promoter-like and enhancer-like histone modification regions and such regulatory mechanisms were specific to lung tissues. Furthermore, 110 genes with INQUISIT score ≥1 may influence diseases susceptibility through exerting effects on coding sequences, proximal promoter and distal enhancer regulations. Pathway enrichment results showed that these genes were enriched in immune-related processes and nicotinic acetylcholine receptors pathways.ConclusionsThis study implemented an integrated gene-based and pathway strategy to explore the underlying biological mechanisms and our findings may serve as promising targets for future clinical treatments of chronic respiratory diseases
Effect of the compact Ti layer on the efficiency of dye-sensitized solar cells assembled using stainless steel sheets
Titanium films have been deposited on stainless steel metal sheets using dc magnetron sputtering technique at different substrate temperatures. The structure of the titanium films strongly depend on the substrate temperature. The titanium film deposited at the substrate temperature lower than 300 ºC has a loose flat sheet grains structure and the titanium film prepared at the substrate temperature higher than 500 ºC has a dense nubby grains structure. The DSSC assembled using stainless steel sheet coated with titanium film deposited at high substrate temperature has a low charge transfer resistance in the TiO2/Ti interface and results in a high conversion efficiency. The DSSC assembled using stainless steel sheet coated with titanium film deposited at temperature higher than 500 ºC has higher conversion efficiency than that assembled using titanium metal sheet as the substrate. The maximum conversion efficiency, 2.26% is obtained for DSSC assembled using stainless steel sheet coated with titanium film deposited at 700 ºC substrate temperature, which is about 70% of the conversion efficiency of the FTO reference cell used in this study.This work was supported by the Dalian University of Technology through the program of the Sea-sky Scholar
Construction of a cDNA library and preliminary analysis of the expressed sequence tags of the earthworm Eisenia fetida (Savigny, 1826)
Earthworms are useful indicator organisms of soil health and Eisenia fetida have been extensively used as test organisms in ecotoxicological studies. In order to gain insight into the gene expression profiles associated with physiological functions of earthworms, a full‑length enriched cDNA library of the Eisenia fetida genome was successfully constructed using Switching Mechanism at 5\u27End of RNA Template technology. Construction of a cDNA library and analysis of Expressed Sequence Tags (ESTs) are efficient approaches for collecting genomic information and identifying genes important for a given biological process. Furthermore, analysis of the expression abundance of ESTs was performed with the aim of providing genetic and transcriptomic information on the development and regenerative process of earthworms. Phrep and Crossmatch were used to process EST data and a total of 1,140 high‑quality EST sequences were determined by sequencing random cDNA clones from the library. Clustering analysis of sequences revealed a total of 593 unique sequences including 225 contiguous and 368 singleton sequences. Basic Local Alignment Search Tool analysis against the Kyoto Encyclopedia of Genes and Genomes database resulted in 593 significant hits (P‑value \u3c1x10‑8), of which 168 were annotated through Gene Ontology analysis. The STRING database was used to determine relationships among the 168 ESTs, identifying associated genes involved in protein‑protein interactions and gene expression regulation. Based on nucleic acid and protein sequence homology, the mutual relationships between 287 genes could be obtained, which identified a portion of the ESTs as known genes. The present study reports on the construction of a high‑quality cDNA library representative of adult earthworms, on a preliminary analysis of ESTs and on a putative functional analysis of ESTs. The present study is expected to enhance our understanding of the molecular basis underlying the biological development of earthworms
Recommended from our members
Antibiotic-Induced Gut Microbiota Dysbiosis Modulates Host Transcriptome and m6A Epitranscriptome via Bile Acid Metabolism.
Gut microbiota can influence host gene expression and physiology through metabolites. Besides, the presence or absence of gut microbiome can reprogram host transcriptome and epitranscriptome as represented by N6-methyladenosine (m6A), the most abundant mammalian mRNA modification. However, which and how gut microbiota-derived metabolites reprogram host transcriptome and m6A epitranscriptome remain poorly understood. Here, investigation is conducted into how gut microbiota-derived metabolites impact host transcriptome and m6A epitranscriptome using multiple mouse models and multi-omics approaches. Various antibiotics-induced dysbiotic mice are established, followed by fecal microbiota transplantation (FMT) into germ-free mice, and the results show that bile acid metabolism is significantly altered along with the abundance change in bile acid-producing microbiota. Unbalanced gut microbiota and bile acids drastically change the host transcriptome and the m6A epitranscriptome in multiple tissues. Mechanistically, the expression of m6A writer proteins is regulated in animals treated with antibiotics and in cultured cells treated with bile acids, indicating a direct link between bile acid metabolism and m6A biology. Collectively, these results demonstrate that antibiotic-induced gut dysbiosis regulates the landscape of host transcriptome and m6A epitranscriptome via bile acid metabolism pathway. This work provides novel insights into the interplay between microbial metabolites and host gene expression
- …