928 research outputs found

    Unveiling Explosive Vulnerability of Networks through Edge Collective Behavior

    Full text link
    Edges, binding together nodes within networks, have the potential to induce dramatic transitions when specific collective failure behaviors emerge. These changes, initially unfolding covertly and then erupting abruptly, pose substantial, unforeseeable threats to networked systems, and are termed explosive vulnerability. Thus, identifying influential edges capable of triggering such drastic transitions, while minimizing cost, is of utmost significance. Here, we address this challenge by introducing edge collective influence (ECI), which builds upon the optimal percolation theory applied to line graphs. ECI embodies features of both optimal and explosive percolation, involving minimized removal costs and explosive dismantling tactic. Furthermore, we introduce two improved versions of ECI, namely IECI and IECIR, tailored for objectives of hidden and fast dismantling, respectively, with their superior performance validated in both synthetic and empirical networks. Finally, we present a dual competitive percolation (DCP) model, whose reverse process replicates the explosive dismantling process and the trajectory of the cost function of ECI, elucidating the microscopic mechanisms enabling ECI's optimization. ECI and the DCP model demonstrate the profound connection between optimal and explosive percolation. This work significantly deepens our comprehension of percolation and provides valuable insights into the explosive vulnerabilities arising from edge collective behaviors.Comment: 19 pages, 11 figures, 2 table

    Spin and orbital angular momentum in gauge theories (II): QCD and nucleon spin structure

    Full text link
    Parallel to the construction of gauge invariant spin and orbital angular momentum for QED in paper (I) of this series, we present here an analogous but non-trivial solution for QCD. Explicitly gauge invariant spin and orbital angular momentum operators of quarks and gluons are obtained. This was previously thought to be an impossible task, and opens a more promising avenue towards the understanding of the nucleon spin structure.Comment: 3 pages, no figure; presented by F. Wang at NSTAR200
    • …
    corecore