56 research outputs found

    PO-291 Applied Research on Enhancing Respiratory Muscle Strength of Synchronized Swimmers by Using Respiratory Muscle Trainer

    Get PDF
    Objective  In research to date , powerbreath training to be tested were useful to improve the athletics’ ability for training the breathe muscles, by the way to optmizing the Breathing technique.To further improve the synchronize swimming athletes’ powerbreath of BeiJing,tenhancing the athletics level and express ability of whole team, to succeed in the finals. Methods Six synchronize swimming athletes were the subjects of our research,the training takes place after the strength training,two times per week, 10 times of five weeks.the training frequency were 24~32 per minutes.At this stages we tested the changes of the breathe muscle by use the CHEST H-101 and Powerbreath K3  before and after the training.All the data were analyzed using SPSS17.0 software. Results The research results shows, training the breathe muscle by spirotiger is the useful training methods to improve the synchronize swimming athletes’s powerbreath.By five weeks training,the synchronize  swimming athletes’ lung volume capacity were significantly increased from 4.38L to 4.54L after powerbreath training, the rate of the enhancing were 3.65%、 FVC were significantly increased from 3.80Lto 3.93L after powerbrath training, the rate of the enhancing were 2.89%、MVVwere significantly increased from 122.2L/min to 127.1L/min, the rate of enchancing were 4.0%, the strength of inspiratory muscle were significantly increased from 110.6cmH2O to 125.6cmH2O, the flow of inspiratory muscle were significantly increased from 6.2L/S to 6.8L/S. All the datas shows that the power of the breathe muscles were enhancing efficenicy after five weeks systematic training,and the variation rate of individual research shows that there were difference between the individuls. Conclusions After five weeks systematic breathe muscle training,FVC and MVV were significantly increased ,shows the synchronize swimming athletes’ respiration muscle strength were significantly increased; the index were significantly increased of the strength of  inspiratory muscle also shows that the breath muscle training were enficiency,and the training plan is helpful to enhancing the synchronize swimming athletes’ powerbreath

    Metabolite Kinetics: The Segregated Flow Model for Intestinal and Whole Body Physiologically Based Pharmacokinetic Modeling to Describe Intestinal and Hepatic Glucuronidation of Morphine in Rats In Vivo

    Get PDF
    ABSTRACT We used the intestinal segregated flow model (SFM) versus the traditional model (TM), nested within physiologically based pharmacokinetic (PBPK) models, to describe the biliary and urinary excretion of morphine 3b-glucuronide (MG) after intravenous and intraduodenal dosing of morphine in rats in vivo. The SFM model describes a partial (5%-30%) intestinal blood flow perfusing the transporter-and enzyme-rich enterocyte region, whereas the TM describes 100% flow perfusing the intestine as a whole. For the SFM, drugs entering from the circulation are expected to be metabolized to lesser extents by the intestine due to the segregated flow, reflecting the phenomenon of shunting and route-dependent intestinal metabolism. The poor permeability of MG crossing the liver or intestinal basolateral membranes mandates that most of MG that is excreted into bile is hepatically formed, whereas MG that is excreted into urine originates from both intestine and liver metabolism, since MG is effluxed back to blood. was better predicted by the SFM-PBPK (2.59 at 4 hours) and not the TM-PBPK (1.0), supporting the view that the SFM is superior for the description of intestinal-liver metabolism of morphine to MG. The SFM-PBPK model predicts an appreciable contribution of the intestine to first pass M metabolism

    Up-regulation of transporters and enzymes by the vitamin D receptor ligands

    Get PDF
    ABSTRACT The effects of 1␣,25-dihydroxyvitamin D 3 [1,25(OH) 2 D 3 ] on gene expression and function were studied in Caco-2 cells. Microarray analyses, real-time quantitative polymerase chain reactions, and Western blotting were used to determine the mRNA and protein expression of transporters and enzymes after 1,25(OH) 2 D 3 or vehicle (0.1% ethanol) treatment for 1, 3, 6, and 10 days. The mRNA and protein expressions of the apical sodium-dependent bile acid transporter, oligopeptide transporter 1, multidrug resistance-associated protein (MRP) 3, and sulfotransferase 1E1 remained unchanged with 1,25(OH) 2 D 3 treatment, whereas those for CYP3A4, multidrug resistance protein 1, and MRP2 were significantly increased (P Ͻ 0.05). 1,25(OH) 2 D 3 treatment significantly enhanced MRP4 protein expression by increasing protein stability without affecting mRNA expression, as confirmed in cycloheximide experiments. Marked increase in 6␤-hydroxylation of testosterone by CYP3A4 was also observed in the 6-day 1,25(OH) 2 D 3 -treated (100 nM) cell lysate. The transport of [ 3 H]digoxin, the P-glycoprotein (P-gp) substrate, after treatment with 100 nM 1,25(OH) 2 D 3 for 3 days revealed a higher apparent permeability (P app ) value in the basal (B)-to-apical (A) direction over that of vehicle treatment (15.1 Ϯ 0.53 ϫ 10 Ϫ6 versus 11.8 Ϯ 0.58 ϫ 10 Ϫ6 cm/s; P Ͻ 0.05), whereas the P app in the A-to-B direction was unchanged; the efflux ratio was increased (from 5.8 to 8.0). Reduced cellular retention of 5-(and-6)-carboxy-2Ј,7Ј-dichlorofluorescein, suggestive of higher MRP2 activity, was observed in the 3-day 100 nM 1,25(OH) 2 D 3 -treated cells over controls. Higher protein expression of CYP3A4, MRP2, P-gp, and MRP4 was also observed after a 6-day treatment with other vitamin D analogs (100 nM 1␣-hydroxyvitamin D 3 , 1␣-hydroxyvitamin D 2 or Hectorol, and 25-hydroxyvitamin D 3 ) in Caco-2 cells, suggesting a role of 1,25(OH) 2 D 3 and analogs in the activation of enzymes and transporters via the vitamin D receptor. The intestine plays an important role in the absorption of orally administered drugs. The expression and proximity of metabolic enzymes and efflux transporters in the enterocyte contribute to intestinal first-pass removal and delimit the tissue accumulation of endo-and xenobiotics. In the small intestine, cytochrome P450 3A4 (CYP3A4) accounts for approximately 70% of total cytochrome P450 content and is responsible for the metabolism of approximately 50% of drugs currently in us

    Nicotine aggravates vascular adiponectin resistance via ubiquitin-mediated adiponectin receptor degradation in diabetic Apolipoprotein E knockout mouse

    Get PDF
    There is limited and discordant evidence on the role of nicotine in diabetic vascular disease. Exacerbated endothelial cell dysregulation in smokers with diabetes is associated with the disrupted adipose function. Adipokines possess vascular protective, anti-inflammatory, and anti-diabetic properties. However, whether and how nicotine primes and aggravates diabetic vascular disorders remain uncertain. In this study, we evaluated the alteration of adiponectin (APN) level in high-fat diet (HFD) mice with nicotine (NIC) administration. The vascular pathophysiological response was evaluated with vascular ring assay. Confocal and co-immunoprecipitation analysis were applied to identify the signal interaction and transduction. These results indicated that the circulating APN level in nicotine-administrated diabetic Apolipoprotein E-deficient (ApoE−/−) mice was elevated in advance of 2 weeks of diabetic ApoE−/− mice. NIC and NIC addition in HFD groups (NIC + HFD) reduced the vascular relaxation and signaling response to APN at 6 weeks. Mechanistically, APN receptor 1 (AdipoR1) level was decreased in NIC and further significantly reduced in NIC + HFD group at 6 weeks, while elevated suppressor of cytokine signaling 3 (SOCS3) expression was induced by NIC and further augmented in NIC + HFD group. Additionally, nicotine provoked SOCS3, degraded AdipoR1, and attenuated APN-activated ERK1/2 in the presence of high glucose and high lipid (HG/HL) in human umbilical vein endothelial cells (HUVECs). MG132 (proteasome inhibitor) administration manifested that AdipoR1 was ubiquitinated, while inhibited SOCS3 rescued the reduced AdipoR1. In summary, this study demonstrated for the first time that nicotine primed vascular APN resistance via SOCS3-mediated degradation of ubiquitinated AdipoR1, accelerating diabetic endothelial dysfunction. This discovery provides a potential therapeutic target for preventing nicotine-accelerated diabetic vascular dysfunction

    A Study of Industry-university-institute Cooperative Education in Colleges and Universities against the Background of Emerging Engineering Education

    No full text
    With emerging engineering education becoming a new strategic direction of the higher engineering education reform in China, it is an important issue faced by colleges and universities to comprehensively improve their abilities of training talent, conducting scientific research and serving the society. Promoting industry-university-institute cooperation is a key measure for colleges and universities to keep up with the pace of higher education and socio-economic development. Colleges and universities need to improve the industry-university-institute cooperative talent training mechanism, and establish an industry-university-institute cooperative education system based on public technology service platforms, to promote the combination of technology and production through cooperative education based on their current situation of research, push forward the supply side reform of higher education, and provide human resources, technical support and industrial services for social development against the background of emerging engineering education. While enhancing their levels of scientific research and education, colleges and universities can promote social progress and help enterprises create economic benefits, to achieve win-win cooperation with all relevant parties in the society

    Offshore Bridge Detection in Polarimetric SAR Images Based on Water Network Construction Using Markov Tree

    No full text
    It is difficult to detect bridges in synthetic aperture radar (SAR) images due to the inherent speckle noise of SAR images, the interference generated by strong coastal scatterers, and the diversity of bridge and coastal terrain morphologies. In this paper, we present a two-step bridge detection method for polarimetric SAR imagery, in which the probability graph model of a Markov tree is used to build the water network, and bridges are detected by traversing the graph of the water network to determine all adjacent water branch pairs. In the step of the water network construction, candidate water branches are first extracted by using a region-based level set segmentation method. The water network is then built globally as a tree by connecting the extracted water branches based on the probabilistic graph model of a Markov tree, in which a node denotes a single branch and an edge denotes the connection of two adjacent branches. In the step of the bridge detection, all adjacent water branch pairs related to bridges are searched by traversing the constructed tree. Each bridge is finally detected by merging the two contours of the corresponding branch pair. Three polarimetric SAR data acquired by RADARSAT-2 covering Singapore and Lingshui, China, and by TerraSAR-X covering Singapore, are used for testing. The experimental results show that the detection rate, the false alarm rate, and the intersection over union (IoU) between the recognized bridge body and the ground truth are all improved by using the proposed method, compared to the method that constructs a water network based on water branches merging by contour distance

    Offshore Oil Platform Detection in Polarimetric SAR Images Using Level Set Segmentation of Limited Initial Region and Convolutional Neural Network

    No full text
    Offshore oil platforms are difficult to detect due to the complex sea state, the sparseness of target distribution, and the similarity of targets with ships. In this paper, we propose an oil platform detection method in polarimetric synthetic aperture radar (PolSAR) images using level set segmentation of a limited initial region and a convolutional neural network (CNN). Firstly, to reduce the interference of sea clutter, the offshore strong scattering targets were initially detected by the generalized optimization of polarimetric contrast enhancement (GOPCE) detector. Secondly, to accurately locate the contour of targets and eliminate false alarms, the coarse results were refined using an improved level set segmentation method. An algorithm for splitting and merging the smallest enclosing circle (SMSEC) was proposed to cover the coarse results and obtain the initial level set function. Finally, the LeNet-5 CNN model was used to classify the oil platforms and ships. Experimental results using multiple sets of polarimetric SAR data acquired by RADARSAT-2 show that the performance of the proposed method, including the detection rate, the false alarm rate, and the Intersection over Union (IOU) index between the extracted ROI and the ground truth, is better than the performance of a method that combines a GOPCE detector and a support vector machine classifier

    Offshore Bridge Detection in Polarimetric SAR Images Based on Water Network Construction Using Markov Tree

    No full text
    It is difficult to detect bridges in synthetic aperture radar (SAR) images due to the inherent speckle noise of SAR images, the interference generated by strong coastal scatterers, and the diversity of bridge and coastal terrain morphologies. In this paper, we present a two-step bridge detection method for polarimetric SAR imagery, in which the probability graph model of a Markov tree is used to build the water network, and bridges are detected by traversing the graph of the water network to determine all adjacent water branch pairs. In the step of the water network construction, candidate water branches are first extracted by using a region-based level set segmentation method. The water network is then built globally as a tree by connecting the extracted water branches based on the probabilistic graph model of a Markov tree, in which a node denotes a single branch and an edge denotes the connection of two adjacent branches. In the step of the bridge detection, all adjacent water branch pairs related to bridges are searched by traversing the constructed tree. Each bridge is finally detected by merging the two contours of the corresponding branch pair. Three polarimetric SAR data acquired by RADARSAT-2 covering Singapore and Lingshui, China, and by TerraSAR-X covering Singapore, are used for testing. The experimental results show that the detection rate, the false alarm rate, and the intersection over union (IoU) between the recognized bridge body and the ground truth are all improved by using the proposed method, compared to the method that constructs a water network based on water branches merging by contour distance

    Efficient Correlation Tracking via Center-Biased Spatial Regularization

    No full text
    corecore