53,555 research outputs found

    Inversion formula and Parsval theorem for complex continuous wavelet transforms studied by entangled state representation

    Full text link
    In a preceding Letter (Opt. Lett. 32, 554 (2007)) we have proposed complex continuous wavelet transforms (CCWTs) and found Laguerre--Gaussian mother wavelets family. In this work we present the inversion formula and Parsval theorem for CCWT by virtue of the entangled state representation, which makes the CCWT theory complete. A new orthogonal property of mother wavelet in parameter space is revealed.Comment: 4 pages no figur

    Simultaneous eigenstates of the number-difference operator and a bilinear interaction Hamiltonian derived by solving a complex differential equation

    Full text link
    As a continuum work of Bhaumik et al who derived the common eigenvector of the number-difference operator Q and pair-annihilation operator ab (J. Phys. A9 (1976) 1507) we search for the simultaneous eigenvector of Q and (ab-a^{+}b^{+}) by setting up a complex differential equation in the bipartite entangled state representation. The differential equation is then solved in terms of the two-variable Hermite polynomials and the formal hypergeometric functions. The work is also an addendum to Mod. Phys. Lett. A 9 (1994) 1291 by Fan and Klauder, in which the common eigenkets of Q and pair creators are discussed

    Energy average formula of photon gas rederived by using the generalized Hermann-Feynman theorem

    Full text link
    By virtue of the generalized Hermann-Feynmam theorem and the method of characteristics we rederive energy average formula of photon gas, this is another useful application of the theorem.Comment: 2 page

    Adaptive Optimal Scaling of Metropolis-Hastings Algorithms Using the Robbins-Monro Process

    Full text link
    We present an adaptive method for the automatic scaling of Random-Walk Metropolis-Hastings algorithms, which quickly and robustly identifies the scaling factor that yields a specified overall sampler acceptance probability. Our method relies on the use of the Robbins-Monro search process, whose performance is determined by an unknown steplength constant. We give a very simple estimator of this constant for proposal distributions that are univariate or multivariate normal, together with a sampling algorithm for automating the method. The effectiveness of the algorithm is demonstrated with both simulated and real data examples. This approach could be implemented as a useful component in more complex adaptive Markov chain Monte Carlo algorithms, or as part of automated software packages

    Entangled Husimi distribution and Complex Wavelet transformation

    Full text link
    Based on the proceding Letter [Int. J. Theor. Phys. 48, 1539 (2009)], we expand the relation between wavelet transformation and Husimi distribution function to the entangled case. We find that the optical complex wavelet transformation can be used to study the entangled Husimi distribution function in phase space theory of quantum optics. We prove that the entangled Husimi distribution function of a two-mode quantum state |phi> is just the modulus square of the complex wavelet transform of exp{-(|eta|^2)/2} with phi(eta)being the mother wavelet up to a Gaussian function.Comment: 7 page

    Quantum mechanical photon-count formula derived by entangled state representation

    Full text link
    By introducing the thermo entangled state representation, we derived four new photocount distribution formulas for a given density operator of light field. It is shown that these new formulas, which is convenient to calculate the photocount, can be expressed as such integrations over Laguree-Gaussian function with characteristic function, Wigner function, Q-function, and P-function, respectively.Comment: 5 pages, no figur

    Coherent States with SU(N) Charges

    Full text link
    We define coherent states carrying SU(N) charges by exploiting generalized Schwinger boson representation of SU(N) Lie algebra. These coherent states are defined on 2(2N11)2 (2^{N - 1} - 1) complex planes. They satisfy continuity property and provide resolution of identity. We also exploit this technique to construct the corresponding non-linear SU(N) coherent states.Comment: 18 pages, LaTex, no figure

    Competing Ordered States in Bilayer Graphene

    Full text link
    We use a perturbative renormalization group approach with short-range continuum model interactions to analyze the competition between isotropic gapped and anisotropic gapless ordered states in bilayer graphene, commenting specifically on the role of exchange and on the importance of spin and valley flavor degeneracy. By comparing the divergences of the corresponding susceptibilities, we conclude that this approach predicts gapped states for flavor numbers N=1,2,4. We also comment briefly on the related gapped states expected in chiral (ABC) trilayer graphene.Comment: 12 pages, 7 figures and 1 tabl
    corecore