38,633 research outputs found
Solidification behavior and microstructural evolution of near-eutectic Zn-Al alloys under intensive shear
Copyright @ 2009 ASM International. This paper was published in Metallurgical and Materials Transactions A, 40(1), 185 - 195 and is made
available as an electronic reprint with the permission of ASM International. One print or electronic copy may
be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via
electronic or other means, duplications of any material in this paper for a fee or for commercial purposes, or
modification of the content of this paper are prohibited.The effect of intensive shear on the solidification behavior and microstructural evolution of binary Zn-Al alloys is presented at hypoeutectic, eutectic, and hypereutectic compositions. It is found that the intensive shear, applied on the eutectic melt prior to solidification at a temperature above but close the eutectic temperature, can significantly reduce the size of eutectic cells, but the solidified microstructure still remains the lamellar morphology. For applying intensive shear on the melt during solidification, the nucleation occurs at temperatures very close to the equilibrium condition and requires very small undercooling for both the primary solidification and the eutectic solidification. The intensive shear can significantly alter the microstructural morphology. In contrast to the dendritic morphology formed in the conventional solidification, the primary Al-rich phase in hypoeutectic Zn-Al alloy and the primary Zn-rich phase in hypereutectic Zn-Al alloy under intensive shear exhibit fine and spherical particles, respectively. The lamellae morphology of Zn-rich phase and Al-rich phase formed in the conventional eutectic solidification exhibit fine and spherical particles. The increase of intensity of shear promotes the independence of solid Zn-rich particles and Al-rich particles during the eutectic solidification, resulting in the uniform and separate distribution of two solid particles in the matrix. It is speculated that the high intensity of shear can result in the independent nucleation of individual eutectic phase throughout the whole melt, and the separate growth of solid phases in the subsequent solidification
Effects of solute content on grain refinement in an isothermal melt
This is the port-print version of the article. The official published version can be obtained from the link below - Copyright @ 2011 Acta Materialia Inc. Published by Elsevier LtdIt is well accepted in the literature that for effective grain refinement some solute is required in the melt to restrict the growth of the solid even if potent nucleating particles with a favourable physical nature are present. In this paper we investigate the effect of the solute on grain initiation in an isothermal melt, and an analytical model is developed to account for the effect of solute elements on grain size. This study revealed that the solute elements in the liquid ahead of the growing crystals reduce the growth velocity of the nucleated crystals and increase the maximum undercooling achievable before recalescence. This allows more particles to be active in nucleation and, consequently, increases the number density of active particles, giving rise to a finer grain size. The analytical model shows that the final grain size can be related to the maximum undercooling, average growth velocity and solid fraction at the moment of recalescence. Further analysis using the free growth model and experimental data in the literature revealed that for a given alloy system solidified under similar conditions the grain size can be empirically related to 1/Q (Q is the growth restriction factor) to a power of 1/3, which is considerably different from the empirical linear relationship in the literature. It is demonstrated that the 1/3 power law can describe the experimental data more accurately than a linear relationship.The EPSRC is gratefully acknowledged for providing financial support under Grant EP/H026177/1
A two component jet model for the X-ray afterglow flat segment in short GRB 051221A
In the double neutron star merger or neutron star-black hole merger model for
short GRBs, the outflow launched might be mildly magnetized and neutron rich.
The magnetized neutron-rich outflow will be accelerated by the magnetic and
thermal pressure and may form a two component jet finally, as suggested by
Vlahakis, Peng & K\"{o}nigl (2003). We show in this work that such a two
component jet model could well reproduce the multi-wavelength afterglow
lightcurves, in particular the X-ray flat segment, of short GRB 051221A. In
this model, the central engine need not to be active much longer than the
prompt ray emission.Comment: 11 pages, 2 figure; Accepted for publication by ApJ
Early photon-shock interaction in stellar wind: sub-GeV photon flash and high energy neutrino emission from long GRBs
For gamma-ray bursts (GRBs) born in a stellar wind, as the reverse shock
crosses the ejecta, usually the shocked regions are still precipitated by the
prompt MeV \gamma-ray emission. Because of the tight overlapping of the MeV
photon flow with the shocked regions, the optical depth for the GeV photons
produced in the shocks is very large. These high energy photons are absorbed by
the MeV photon flow and generate relativistic e^\pm pairs. These pairs
re-scatter the soft X-ray photons from the forward shock as well as the prompt
\gamma-ray photons and power detectable high energy emission, significant part
of which is in the sub-GeV energy range. Since the total energy contained in
the forward shock region and the reverse shock region are comparable, the
predicted sub-GeV emission is independent on whether the GRB ejecta are
magnetized (in which case the reverse shock IC and synchrotron self-Compton
emission is suppressed). As a result, a sub-GeV flash is a generic signature
for the GRB wind model, and it should be typically detectable by the future
{\em Gamma-Ray Large Area Telescope} (GLAST). Overlapping also influence
neutrino emission. Besides the 10^{15} \sim 10^{17} eV neutrino emission
powered by the interaction of the shock accelerated protons with the
synchrotron photons in both the forward and reverse shock regions, there comes
another eV neutrino emission component powered by protons interacting
with the MeV photon flow. This last component has a similar spectrum to the one
generated in the internal shock phase, but the typical energy is slightly
lower.Comment: 7 pages, accepted for publication in Ap
A Reverse-Shock Model for the Early Afterglow of GRB 050525A
The prompt localization of gamma-ray burst (GRB) 050525A by {\em Swift}
allowed the rapid follow-up of the afterglow. The observations revealed that
the optical afterglow had a major rebrightening starting at days
and ending at days, which was followed by an initial power-law
decay. Here we show that this early emission feature can be interpreted as the
reverse shock emission superposed by the forward shock emission in an
interstellar medium environment. By fitting the observed data, we further
constrain some parameters of the standard fireball-shock model: the initial
Lorentz factor of the ejecta , the magnetic energy fraction
, and the medium density . These
limits are consistent with those from the other very-early optical afterglows
observed so far. In principle, a wind environment for GRB 050525A is
disfavored.Comment: 11 pages, 1 figure, accepted for publication in Ap
Recommended from our members
Twin roll casting and melt conditioned twin-roll casting of magnesium alloys
Recently, BCAST at Brunel University has developed a MCAST (melt conditioning by advanced shear technology) process for conditioning liquid metal at temperature either above or bellow the alloy liquidus using a high shear twin-screw mechanism. The MCAST process has now been combined with the twin roll casting (TRC) process to form an innovative technology, namely, the melt conditioned twin roll casting (MC-TRC) process for casting Al-alloy and Mg-alloy strips. During the MC-TRC process, liquid alloy with a specified temperature is continuously fed into the MCAST machine. By intensive shearing under the high shear rate and high intensity of turbulence, the liquid is transformed into conditioned melt with uniform temperature and composition throughout the whole volume. The conditioned melt is then fed continuously into the twin-roll caster for strip production. The experimental results show that the AZ91D MC-TRC strips with different thicknesses have fine and uniform microstructure. The strip consists of equiaxed grains with a mean size of 60-70μm. The strip displays extremely uniform grain size and composition throughout the whole cross-section. Investigation also shows that both TRC and MC-TRC processes with reduced deformation are effective to reduce the formation of defects, particularly the formation of the central line segregations
Strong GeV Emission Accompanying TeV Blazar H1426+428
For High frequency BL Lac objects (HBLs) like H1426+428, a significant
fraction of their TeV gamma-rays emitted are likely to be absorbed in
interactions with the diffuse IR background, yielding pairs. The
resulting pairs generate one hitherto undiscovered GeV emission by
inverse Compton scattering with the cosmic microwave background photons
(CMBPs). We study such emission by taking the 1998-2000 CAT data, the
reanalyzed 1999 & 2000 HEGRA data and the corresponding intrinsic spectra
proposed by Aharonian et al. (2003a). We numerically calculate the scattered
photon spectra for different intergalactic magnetic field (IGMF) strengths. If
the IGMF is about or weaker, there comes very strong GeV
emission, whose flux is far above the detection sensitivity of the upcoming
satellite GLAST! Considered its relatively high redshift (), the
detected GeV emission in turn provides us a valuable chance to calibrate the
poor known spectral energy distribution of the intergalactic infrared
background, or provides us some reliable constraints on the poorly known IGMF
strength.Comment: 5 pages, 1 figure. A&A in Pres
- …