58 research outputs found

    Improved photocatalytic activity of g-C3N4 derived from cyanamide-urea solution

    Get PDF
    This paper describes the fabrication of g-C3N4 by the polymerization of cyanamide-urea solution at elevated temperatures. The textural properties and electronic band structure of the obtained g-C3N4 were investigated in detail. The photocatalytic activity for both oxidative and reductive reactions of the as-synthesized g-C3N4 was found to be enhanced as the polymerization temperature increase and the g-C3N4 obtained at 700 degrees C (CN-700) showed the best photocatalytic activity under visible-light (lambda > 420 nm). Considering that the rather wide band gap (3.01 eV) of CN-700 disables the electron transition from the valence band to the conduction band by visible light (l > 420 nm), it is believed the n-pi* transition, which is alternatively proposed in this study, plays a key role in its photocatalytic activity. In light of this discovery, the variation of the electron-transition mechanism for g-C3N4 fabricated at different polymerization temperatures has been firstly investigated

    Investigation on the propagation characteristics of pressure wave during managed pressure drilling

    Get PDF
    The small difference between formation pressure and fracture pressure in offshore oil and gas reservoirs poses a huge challenge to drilling. Managed pressure drilling (MPD) technology, as a drilling technique that can accurately control bottomhole pressure, is an effective technique to solve this challenge. In MPD technology, the pressure wave propagation behavior and mechanism in the wellbore induced by wellhead backpressure are crucial for parameter design and efficient application. In this paper, pressure wave propagation characteristics and mechanism in gas-liquid flow were investigated with a new proposed pressure wave velocity model that considers inter-phase mass transfer effect. This new model and its solution algorithm were verified with experimental data in literature. The influence of gas invasion stage, drilling fluid type, drilling fluid density and backpressure on pressure wave propagation characteristics were investigated. Results show that the time for pressure wave induced by wellhead backpressure in the wellbore cannot be ignored in the design of the backpressure value during MPD. This propagation time increases with occurrence of gas invasion. Moreover, the propagation time in water-based drilling fluid is longer than that in oil-based drilling fluid, which is because the interphase mass transfer between invaded gas and oil-based drilling fluid. The influence mechanism of high drilling fluid density and wellhead backpressure on pressure wave propagation characteristics is due to the suppression of gas invasion process. These findings could be used as guides in parameters design and optimization in MPD

    Comparative Study on Mechanical Properties of Sealing Grease Composed of Different Base Oils for Shield Tunnel

    No full text
    This study proposes a novel sealing grease with improved mechanical properties and environmental performance. A series of sealing grease samples were made with different base oils, including mineral oil and renewable oil (vegetable oil and lard). In this study, thermogravimetric analysis (TGA) was conducted to study the adsorption capacity of the thickener to the base oil. The fluidity of the sealing grease was also tested at different temperatures. Furthermore, an exponential function was proposed for the flow rate of the sealing grease and the temperature. Moreover, a cone penetration test was conducted to study the consistency of the sealing grease. The results indicated that the capacity of the thickener to adsorb vegetable oil was greater than that of mineral oil, but less than that of lard. Additionally, the flow rate of the sealing grease increased with an increase in temperature. At a fixed temperature, the flow rate of the sealing grease increased with the base oil content. According to the exponential function, the composition of the base oil is the key factor that determines the temperature sensitivity of the sealing grease. In addition, the sealing grease made of vegetable oil has the minimum temperature sensitivity coefficient

    The Influence of Fiber on the Mechanical Properties of Geopolymer Concrete: A Review

    No full text
    Geopolymer is widely used as a supplement to cementitious composites because of its advantages of low carbon and environmental protection, and geopolymer concrete is also broadly used in practical engineering. In recent years, geopolymer concrete has attracted increasing interest owing to its superior mechanical properties, and a series of research results have been obtained. In this paper, from the preparation of geopolymer concrete, based on the characteristics that geopolymer concrete is brittle and easy to crack, the types and basic properties of fibers to enhance the toughness of concrete are analyzed, the advantages and disadvantages of different fibers used as a material to enhance the toughness of concrete are summarized, and we review the effects of type, shape, volume rate, aspect ratio, and hybrid fiber combinations on the static mechanical properties. The results indicate that fibers have significant potential to enhance the compressive strength, splitting tensile strength, flexural strength, and fracture toughness of geopolymer concrete, and the optimal fiber volume rate seems to be related to the fiber type. Whereas the effect of aspect ratio and hybrid fiber combinations on the properties of geopolymer concrete seems to be obvious. This paper reviews the influence of fiber on the basic mechanical properties of geopolymer concrete, which provides a solid foundation to promote the further development and application of the research on the toughness of fiber-reinforced geopolymer concrete and provides recommendations for future research

    Influence of cathode materials on thermal characteristics of lithium-ion batteries

    No full text
    In this work, the thermal stability of four types of 18,650 lithium-ion batteries with LiCoO2 (LCO), LiFePO4 (LFP), LiNi0.8Co0.1Mn0.1O2 (NCM811) and LiNi0.8Co0.15Al0.05O2 (NCA) materials as cathodes are experimentally investigated by the accelerating rate calorimeter (ARC) and the isothermal battery testing calorimeter (iso-BTC) under adiabatic and isothermal conditions, respectively. The thermal runaway danger level of these batteries can be ranked as LCO > NCA > NCM811 >> LFP by judging from the values of Tmax and HRmax, nominal. The higher the nickel and cobalt content, the higher the lithium-ion battery capacity, but the worse the thermal stability. The Qtotal of NCA is the largest in the complete standard charge and discharge process, due to that the capacity of NCA is significantly higher than that of the other three batteries, resulting in remarkable increase in Qirre proportioned to the square of the current. When the ambient temperature rises, the energy release decreases owing to the decrease in the internal resistance of the battery. These studies are expected to have important implications for the subsequent safe design of commercial lithium-ion batteries with different cathode materials

    The Influence of Fiber on the Mechanical Properties of Geopolymer Concrete: A Review

    No full text
    Geopolymer is widely used as a supplement to cementitious composites because of its advantages of low carbon and environmental protection, and geopolymer concrete is also broadly used in practical engineering. In recent years, geopolymer concrete has attracted increasing interest owing to its superior mechanical properties, and a series of research results have been obtained. In this paper, from the preparation of geopolymer concrete, based on the characteristics that geopolymer concrete is brittle and easy to crack, the types and basic properties of fibers to enhance the toughness of concrete are analyzed, the advantages and disadvantages of different fibers used as a material to enhance the toughness of concrete are summarized, and we review the effects of type, shape, volume rate, aspect ratio, and hybrid fiber combinations on the static mechanical properties. The results indicate that fibers have significant potential to enhance the compressive strength, splitting tensile strength, flexural strength, and fracture toughness of geopolymer concrete, and the optimal fiber volume rate seems to be related to the fiber type. Whereas the effect of aspect ratio and hybrid fiber combinations on the properties of geopolymer concrete seems to be obvious. This paper reviews the influence of fiber on the basic mechanical properties of geopolymer concrete, which provides a solid foundation to promote the further development and application of the research on the toughness of fiber-reinforced geopolymer concrete and provides recommendations for future research

    Pricing Personal Data Based on Data Provenance

    No full text
    Data have become an important asset. Mining the value contained in personal data, making personal data an exchangeable commodity, has become a hot spot of industry research. Then, how to price personal data reasonably becomes a problem we have to face. Based on previous research on data provenance, this paper proposes a novel minimum provenance pricing method, which is to price the minimum source tuple set that contributes to the query. Our pricing model first sets prices for source tuples according to their importance and then makes query pricing based on data provenance, which considers both the importance of the data itself and the relationships between the data. We design an exact algorithm that can calculate the exact price of a query in exponential complexity. Furthermore, we design an easy approximate algorithm, which can calculate the approximate price of the query in polynomial time. We instantiated our model with a select-joint query and a complex query and extensively evaluated its performances on two practical datasets. The experimental results show that our pricing model is feasible

    STK25-induced inhibition of aerobic glycolysis via GOLPH3-mTOR pathway suppresses cell proliferation in colorectal cancer

    No full text
    Abstract Background Serine/threonine protein kinase 25 (STK25) is critical in regulating whole-body glucose and insulin homeostasis and the accumulation of ectopic lipids. The Warburg effect, also known as aerobic glycolysis, is an essential metabolic characteristic of cancer cells. However, the effects of STK25 on aerobic glycolysis of cancer cells remain unexplored. The aim of this study is to investigate the role of STK25 in colorectal cancer (CRC) and to elucidate the underlying mechanisms. Methods The influences of STK25 on the cell proliferation were evaluated by MTT and colony formation assays. The roles of STK25 in aerobic glycolysis were determined by glucose uptake and lactate production assays. The interaction between STK25 and GOLPH3 was detected by co-immunoprecipitation, GST pull-down, and His-tag pull-down assays. Western blot was used to measure the expression of glycolytic genes, and the status of kinases in mTOR pathway. Moreover, a xenograft mouse model was used to investigate the effects of STK25 in vivo. The prognostic significance of STK25 was analyzed using public CRC datasets by a log-rank test. Results STK25 suppressed proliferation, glycolysis and glycolytic gene expression in CRC cells. STK25 interacted with GOLPH3 and mediated glycolysis through GOLPH3-regulated mTOR signaling. Consistent with these observations, silencing of STK25 promoted tumor growth and glycolytic gene expression in an in vivo xenograft mouse model. Moreover, high levels of STK25 correlated with favorable prognosis in patients with CRC. Conclusions Our results demonstrated that STK25 negatively regulates the proliferation and glycolysis via GOLPH3-dependent mTOR signaling. Accordingly, STK25 could be a potential therapeutic target for the treatment of CRC
    corecore