1,507 research outputs found

    Functional renormalization group and variational Monte Carlo studies of the electronic instabilities in graphene near 1/4 doping

    Full text link
    We study the electronic instabilities of near 1/4 electron doped graphene using the functional renormalization group (FRG) and variational Monte-Carlo method. A modified FRG implementation is utilized to improve the treatment of the von Hove singularity. At 1/4 doping the system is a chiral spin density wave state exhibiting the anomalous quantized Hall effect, or equivalently a Chern insulator. When the doping deviates from 1/4, the dx2−y2+idxyd_{x^2-y^2}+i d_{xy} Cooper pairing becomes the leading instability. Our results suggest near 1/4 electron or hole doped graphene is a fertile playground for the search of Chern insulators and superconductors.Comment: 7 pages, 8 figures, with technical details, published versio

    Proteomic identification of differentially expressed and phosphorylated proteins in epidermis involved in larval-pupal metamorphosis of Helicoverpa armigera

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Metamorphosis is an important process in the life cycle of holometabolous insects and is regulated by insect hormones. During metamorphosis, the epidermis goes through a significant transformation at the biochemical and molecular levels.</p> <p>Results</p> <p>To identify proteins and phosphoproteins involved in this process, we separated and compared epidermal protein profiles between feeding larvae and metamorphically committed larvae using two-dimensional gel electrophoresis and Pro-Q Diamond Phosphoprotein Staining. Sixty-one spots showing differential expression and/or phosphorylation were analyzed by mass spectrometry and eighteen proteins were proved related to larval-pupal transformation. Eight of them were further examined at the mRNA level by Reverse Transcription Polymerase Chain Reaction (RT-PCR) and two of them were examined at the protein level by Western blot. Calponin was highly expressed in the metamorphic epidermis and phosphorylated by protein kinase C.</p> <p>Conclusion</p> <p>Our results suggest that the expression and phosphorylation of these proteins may play important roles in coordinating the biochemical processes involved in larval-pupal metamorphosis.</p

    Ceramic Nano-particle/Substrate Interface Bonding Formation Derived from Dynamic Mechanical Force at Room Temperature: HRTEM Examination

    Get PDF
    The bonding of TiO nano-particle/substrate is a critical factor influencing the performance of dye-sensitized solar cells. In order to reveal the bonding properties at TiO nano-particle/substrate interface, high-resolution transmission electron microscopy (HRTEM) analysis was adopted to TiO coatings prepared by three different approaches. In the HRTEM analysis, the effective bonding mode is allowed to distinguish from the false image overlapping. Results show that large areas of effective bonding between nano-TiO particles and the substrate surface formed in the room temperature cold sprayed coating and mechanically pressed coating, while only limited interface areas with the effective bonding were observed in the coating deposited by non-pressed method. These results confirm that both high impact pressure during the room temperature cold spraying and mechanical pressure contribute to the bonding formation at the particle/substrate interface

    High speed self-testing quantum random number generation without detection loophole

    Full text link
    Quantum mechanics provides means of generating genuine randomness that is impossible with deterministic classical processes. Remarkably, the unpredictability of randomness can be certified in a self-testing manner that is independent of implementation devices. Here, we present an experimental demonstration of self-testing quantum random number generation based on an detection-loophole free Bell test with entangled photons. In the randomness analysis, without the assumption of independent identical distribution, we consider the worst case scenario that the adversary launches the most powerful attacks against quantum adversary. After considering statistical fluctuations and applying an 80 Gb ×\times 45.6 Mb Toeplitz matrix hashing, we achieve a final random bit rate of 114 bits/s, with a failure probability less than 10−510^{-5}. Such self-testing random number generators mark a critical step towards realistic applications in cryptography and fundamental physics tests.Comment: 34 pages, 10 figure
    • …
    corecore