114 research outputs found

    Out-of-Time-Order Correlation at a Quantum Phase Transition

    Full text link
    In this paper we numerically calculate the out-of-time-order correlation functions in the one-dimensional Bose-Hubbard model. Our study is motivated by the conjecture that a system with Lyapunov exponent saturating the upper bound 2π/β2\pi/\beta will have a holographic dual to a black hole at finite temperature. We further conjecture that for a many-body quantum system with a quantum phase transition, the Lyapunov exponent will have a peak in the quantum critical region where there exists an emergent conformal symmetry and is absent of well-defined quasi-particles. With the help of a relation between the R\'enyi entropy and the out-of-time-order correlation function, we argue that the out-of-time-order correlation function of the Bose-Hubbard model will also exhibit an exponential behavior at the scrambling time. By fitting the numerical results with an exponential function, we extract the Lyapunov exponents in the one-dimensional Bose-Hubbard model across the quantum critical regime at finite temperature. Our results on the Bose-Hubbard model support the conjecture. We also compute the butterfly velocity and propose how the echo type measurement of this correlator in the cold atom realizations of the Bose-Hubbard model without inverting the Hamiltonian.Comment: 7 pages, 6 figures, published versio

    Out-of-Time-Order Correlation for Many-Body Localization

    Full text link
    In this paper we first compute the out-of-time-order correlators (OTOC) for both a phenomenological model and a random-field XXZ model in the many-body localized phase. We show that the OTOC decreases in power law in a many-body localized system at the scrambling time. We also find that the OTOC can also be used to distinguish a many-body localized phase from an Anderson localized phase, while a normal correlator cannot. Furthermore, we prove an exact theorem that relates the growth of the second R\'enyi entropy in the quench dynamics to the decay of the OTOC in equilibrium. This theorem works for a generic quantum system. We discuss various implications of this theorem.Comment: 6 pages, 3 figures, published versio

    Generalized Real-space Chern Number Formula and Entanglement Hamiltonian

    Full text link
    We generalize the real-space Chern number formula for gapped free fermion Hamiltonians. Using this generalized formula, we prove the recent proposals for extracting thermal and electric Hall conductance from the ground state via entanglement Hamiltonian, in the special case of Gaussian states.Comment: 9 pages + 3 appendice

    Periodically, Quasi-periodically, and Randomly Driven Conformal Field Theories (II): Furstenberg's Theorem and Exceptions to Heating Phases

    Full text link
    In this sequel (to [Phys. Rev. Res. 3, 023044(2021)], arXiv:2006.10072), we study randomly driven (1+1)(1+1) dimensional conformal field theories (CFTs), a family of quantum many-body systems with soluble non-equilibrium quantum dynamics. The sequence of driving Hamiltonians is drawn from an independent and identically distributed random ensemble. At each driving step, the deformed Hamiltonian only involves the energy-momentum density spatially modulated at a single wavelength and therefore induces a M\"obius transformation on the complex coordinates. The non-equilibrium dynamics is then determined by the corresponding sequence of M\"obius transformations, from which the Lyapunov exponent λL\lambda_L is defined. We use Furstenberg's theorem to classify the dynamical phases and show that except for a few \emph{exceptional points} that do not satisfy Furstenberg's criteria, the random drivings always lead to a heating phase with the total energy growing exponentially in the number of driving steps nn and the subsystem entanglement entropy growing linearly in nn with a slope proportional to central charge cc and the Lyapunov exponent λL\lambda_L. On the contrary, the subsystem entanglement entropy at an exceptional point could grow as n\sqrt{n} while the total energy remains to grow exponentially. In addition, we show that the distributions of the operator evolution and the energy density peaks are also useful characterizations to distinguish the heating phase from the exceptional points: the heating phase has both distributions to be continuous, while the exceptional points could support finite convex combinations of Dirac measures depending on their specific type. In the end, we compare the field theory results with the lattice model calculations for both the entanglement and energy evolution and find remarkably good agreement.Comment: 66 pages, 1 table, many figures; This is part II on randomly driven CFT

    Emergent Spatial Structure and Entanglement Localization in Floquet Conformal Field Theory

    Full text link
    We study the energy and entanglement dynamics of (1+1)(1+1)D conformal field theories (CFTs) under a Floquet drive with the sine-square deformed (SSD) Hamiltonian. Previous work has shown this model supports both a non-heating and a heating phase. Here we analytically establish several robust and `super-universal' features of the heating phase which rely on conformal invariance but not on the details of the CFT involved. First, we show the energy density is concentrated in two peaks in real space, a chiral and anti-chiral peak, which leads to an exponential growth in the total energy. The peak locations are set by fixed points of the M\"obius transformation. Second, all of the quantum entanglement is shared between these two peaks. In each driving period, a number of Bell pairs are generated, with one member pumped to the chiral peak, and the other member pumped to the anti-chiral peak. These Bell pairs are localized and accumulate at these two peaks, and can serve as a source of quantum entanglement. Third, in both the heating and non-heating phases we find that the total energy is related to the half system entanglement entropy by a simple relation E(t)cexp(6cS(t))E(t)\propto c \exp \left( \frac{6}{c}S(t) \right) with cc being the central charge. In addition, we show that the non-heating phase, in which the energy and entanglement oscillate in time, is unstable to small fluctuations of the driving frequency in contrast to the heating phase. Finally, we point out an analogy to the periodically driven harmonic oscillator which allows us to understand global features of the phases, and introduce a quasiparticle picture to explain the spatial structure, which can be generalized to setups beyond the SSD construction.Comment: 41 pages, 19 figure
    corecore