33 research outputs found

    Serum level of A-kinase anchoring protein 1, negatively correlated with insulin resistance and body mass index, decreases slightly in patients with newly diagnosed T2DM

    Get PDF
    Introduction: At present, the number of people suffering from diabetes and obesity is increasing in China, and also all over the world. Researchers found that decreased expression of A-kinase anchoring protein 1 (AKAP1), which was thought to regulate the function and structure of mitochondria, might be related to these two diseases. However, as far as we know, there is no study about the changes of serum AKAP1 protein in these two diseases. Hence we conducted this experiment to study the relationship between serum levels of AKAP1 with T2DM and obesity. Material and methods: There were 261 subjects involved in the experiment, including 130 patients with newly diagnosed T2DM and 131 individuals with normal glucose tolerance (NGT). They were further divided into four groups as follows. Subjects with NGT and normal weight (NW) were assigned to the NGT+NW group, those with NGT but with overweight (OW) or obesity (OB) were assigned to the NGT+OW/OB group, and so on; the rest were divided into the T2DM+NW group and the T2DM+OW/OB group. Serum AKAP1 levels were tested by ELISA method and compared by T-test. Linear regression was applied to discuss independent factors of AKAP1. Multiple logistic regression was used to analyse the relationship between AKAP1 and the prevalence of T2DM. Results: Serum AKAP1 in the NGT+NW group was 1.74 ± 0.42 ng/mL, higher than that in the NGT+OW/OB group, at 1.59 ± 0.41 ng/mL (t = 2.114, p = 0.036), and the T2DM+OW/OB group, at 1.52 ± 0.36 ng/ml (t = 3.219, p = 0.002). A-kinase anchoring protein 1 in 130 subjects with T2DM was lower than that in subjects with NGT, 1.57 ± 0.35 ng/mL vs. 1.67 ± 0.42 ng/mL, t = 2.036, p = 0.043. Liner regression showed that insulin resistance (IR) and body mass index (BMI) were independent factors negatively related to AKAP1: b = –0.019 and –0.032, respectively. Compared to the highest tertile of AKAP1, the prevalence of T2DM was higher in the other two tertiles; OR was 2.207 (1.203, 4.050) and 2.051 (1.121, 3.753), respectively. Conclusions: Serum AKAP1 level decreases slightly in patients with T2DM and obesity. Subjects with lower leve1s of serum AKAP1 are susceptible to T2DM.

    UFO2: A unified pre-training framework for online and offline speech recognition

    Full text link
    In this paper, we propose a Unified pre-training Framework for Online and Offline (UFO2) Automatic Speech Recognition (ASR), which 1) simplifies the two separate training workflows for online and offline modes into one process, and 2) improves the Word Error Rate (WER) performance with limited utterance annotating. Specifically, we extend the conventional offline-mode Self-Supervised Learning (SSL)-based ASR approach to a unified manner, where the model training is conditioned on both the full-context and dynamic-chunked inputs. To enhance the pre-trained representation model, stop-gradient operation is applied to decouple the online-mode objectives to the quantizer. Moreover, in both the pre-training and the downstream fine-tuning stages, joint losses are proposed to train the unified model with full-weight sharing for the two modes. Experimental results on the LibriSpeech dataset show that UFO2 outperforms the SSL-based baseline method by 29.7% and 18.2% relative WER reduction in offline and online modes, respectively.Comment: Accepted by ICASSP 202

    Magnetic metal organic frameworks (MOFs) composite for removal of lead and malachite green in wastewater

    Get PDF
    We designed and synthesized a magnetic metal organic frameworks (MOFs) composite, Cu-MOFs/FeO as the adsorbent for removal of lead (Pb(II)) and malachite green (MG) in wastewater. This Cu-MOFs/FeO can be easily prepared by in-situ growth of Cu-MOFs with doping FeO nanoparticles. The prepared Cu-MOFs/FeO composite was well characterized by SEM, XRD, and FTIR spectra. The adsorption experiments found that Cu-MOFs/FeO can serve as adsorbent for removal of Pb(II) and MG simultaneously. The adsorption capacities were found to be 113.67 mg/g for MG and 219.00 mg/g for Pb, respectively, which are significantly higher than reported materials. Adsorption isotherm, kinetics and recyclability of Cu-MOFs/FeO for removal of Pb(II) and MG were then studied. Adsorption of Pb(II) and MG exhibited Freundlich adsorption isotherm model, with the adsorption kinetics of available second-order kinetic. Physical adsorption for MG and chemical adsorption for Pb(II) were confirmed by Dubinin-Radushkevich (D-R) isothermal adsorption model. The adsorption of Pb(II) and MG in real water samples were then studied. The FeO/Cu-MOFs was found to be recyclable for removal of Pb(II) and MG, can be explored as the potential adsorbent for waste water treatment

    Mutations of genes in synthesis of the carotenoid precursors of ABA lead to pre-harvest sprouting and photo-oxidation in rice

    Get PDF
    Pre-harvest sprouting (PHS) or vivipary in cereals is an important agronomic trait that results in significant economic loss. A considerable number of mutations that cause PHS have been identified in several species. However, relatively few viviparous mutants in rice (Oryza sativa L.) have been reported. To explore the mechanism of PHS in rice, we carried out an extensive genetic screening and identified 12 PHS mutants (phs). Based on their phenotypes, these phs mutants were classified into three groups. Here we characterize in detail one of these groups, which contains mutations in genes encoding major enzymes of the carotenoid biosynthesis pathway, including phytoene desaturase (OsPDS), ζ-carotene desaturase (OsZDS), carotenoid isomerase (OsCRTISO) and lycopene β-cyclase (β-OsLCY), which are essential for the biosynthesis of carotenoid precursors of ABA. As expected, the amount of ABA was reduced in all four phs mutants compared with that in the wild type. Chlorophyll fluorescence analysis revealed the occurrence of photoinhibition in the photosystem and decreased capacity for eliminating excess energy by thermal dissipation. The greatly increased activities of reactive oxygen species (ROS) scavenging enzymes, and reduced photosystem (PS) II core proteins CP43, CP47 and D1 in leaves of the Oscrtiso/phs3-1 mutant and OsLCY RNAi transgenic rice indicated that photo-oxidative damage occurred in PS II, consistent with the accumulation of ROS in these plants. These results suggest that the impairment of carotenoid biosynthesis causes photo-oxidation and ABA-deficiency phenotypes, of which the latter is a major factor controlling the PHS trait in rice

    Error Characteristics of GNSS Derived TEC

    No full text
    The Global Navigation Satellite System (GNSS) allows for the cost-effective estimation of the ionospheric total electron content (TEC). However, research on error characteristics of the derived TEC is scarce, which provides insights into the quality of the GNSS ionospheric observation. We investigate characteristics of errors in the derived TEC with data from ~260 GNSS dual-frequency receivers of the Crustal Movement Observation Network of China (CMONOC). The slant TEC is calculated from carrier phase measurements and the vertical TEC over China is fitted with a spatial resolution of 1° by 1° in latitude and longitude in four seasons of 2014. It is found that the errors of both the slant TEC and the derived TEC follow Laplace distribution rather than Gaussian distribution in all seasons. The errors of the slant TEC have sharper peaks than those of the derived TEC. The Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) of the slant TEC are typically 0.04 TECU and 0.2 TECU, while the MAE and RMSE of the fitting residuals for the derived TEC are typically 1 TECU and under 2 TECU, respectively. Both MAEs and RMSEs of the derived TEC have the largest value in spring and the smallest value in summer, while the seasonal dependence is only observed in RMSE of the slant TEC

    Error Characteristics of GNSS Derived TEC

    No full text
    The Global Navigation Satellite System (GNSS) allows for the cost-effective estimation of the ionospheric total electron content (TEC). However, research on error characteristics of the derived TEC is scarce, which provides insights into the quality of the GNSS ionospheric observation. We investigate characteristics of errors in the derived TEC with data from ~260 GNSS dual-frequency receivers of the Crustal Movement Observation Network of China (CMONOC). The slant TEC is calculated from carrier phase measurements and the vertical TEC over China is fitted with a spatial resolution of 1° by 1° in latitude and longitude in four seasons of 2014. It is found that the errors of both the slant TEC and the derived TEC follow Laplace distribution rather than Gaussian distribution in all seasons. The errors of the slant TEC have sharper peaks than those of the derived TEC. The Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) of the slant TEC are typically 0.04 TECU and 0.2 TECU, while the MAE and RMSE of the fitting residuals for the derived TEC are typically 1 TECU and under 2 TECU, respectively. Both MAEs and RMSEs of the derived TEC have the largest value in spring and the smallest value in summer, while the seasonal dependence is only observed in RMSE of the slant TEC

    Assessing the comparability of cycle threshold values derived from five external quality assessment rounds for omicron nucleic acid testing

    No full text
    Abstract Background A variety of open-system real-time reverse transcriptase polymerase chain reaction (RT-PCR) assays for several acute respiratory syndrome coronavirus 2 are currently in use. This study aimed to ensure the quality of omicron nucleic acid testing and to assess the comparability of cycle threshold (Ct) values derived from RT-PCR. Methods Five external quality assessment (EQA) rounds using the omicron virus-like particles were organized between February 2022 and June 2022. Results A total of 1401 qualitative EQA reports have been collected. The overall positive percentage agreement was 99.72%, the negative percentage agreement was 99.75%, and the percent agreement was 99.73%. This study observed a significant variance in Ct values derived from different test systems. There was a wide heterogeneity in PCR efficiency among different RT-PCR kits and inter-laboratories. Conclusion There was strong concordance among laboratories performing qualitative omicron nucleic acid testing. Ct values from qualitative RT-PCR tests should not be used for clinical or epidemiological decision-making to avoid the potential for misinterpretation of the results

    Multi-Period Generation Expansion Planning for Sustainable Power Systems to Maximize the Utilization of Renewable Energy Sources

    No full text
    The increasing penetration of renewable energy brings great challenges to the planning and operation of power systems. To deal with the fluctuation of renewable energy, the main focus of current research is on incorporating the detailed operation constraints into generation expansion planning (GEP) models. In most studies, the traditional objective function of GEP is to minimize the total cost (including the investment and operation cost). However, in power systems with high penetration of renewable energy, more attention has been paid to increasing the utilization of renewable energy and reducing the renewable energy curtailment. Different from the traditional objective function, this paper proposes a new objective function to maximize the accommodation of renewable energy during the planning horizon, taking into account short-term operation constraints and uncertainties from load and renewable energy sources. A power grid of one province in China is modified as a case study to verify the rationality and effectiveness of the proposed model. Numerical results show that the proposed GEP model could install more renewable power plants and improve the accommodation of renewable energy compared to the traditional GEP model

    Characteristics of ionospheric irregularities near the northern equatorial anomaly crest

    Get PDF
    This paper detects the ionospheric irregularities with rate of total electron content (TEC) change index, ROTI from GPS observation at Taoyuan (24.95° N, 121.16° E) for the solar medium and minimum years of 2003 and 2008 in the declining phase of cycle 23, the solar maximum of 2014 in solar cycle 24. Local occurrence rate (LOR) is proposed to clarify the characteristics of the irregularities together with monthly occurrence rate (MOR) and ROTI maximum for 3 latitude belts, 20–23° N, 23–26° N, 26–29° N, around the equatorial anomaly crest. MOR in May/June is larger than those in equinoxes in 2008 and 2003, which is different from that of equatorial plasma bubbles. In 2014 although MOR maximum is observed in equinoxes, the MOR in May and June is much larger than that in September. Moreover, MORs in May to August at higher latitude belt 26–29° N are larger than those in lower latitude belts and smaller in the equinoxes. The latitudinal dependence of the LORs tends to be similar to that of MORs. Seasonal variations of LORs have a similar trend for different solar activities. Maximum LORs are observed in Feb/Mar and Sep/Oct, and moderate around June, which resemble those of plasma bubbles in seasonal variations, except for latitude belt 26–29° N where maximum LORs are seen in May–Jul. The seasonal variation of ROTI maximum conforms to that of the LOR. The results suggest that irregularities near the crest in May to August are mainly originated from nonequatorial process, which is more frequently happened but weaker than plasma bubble in both spatiotemporal scale and strength
    corecore