1,072 research outputs found

    Prebiotics and β-Glucan as gut modifier feed additives in modulation of growth performance, protein utilization status and dry matter and lactose digestibility in weanling pigs

    Get PDF
    There are growing interests in developing novel gut modifier feed additives and alternative therapeutics to replace antimicrobials to enhance efficiency of nutrient utilization and to address the antimicrobial resistance threat to public health facing the global pork production. Biological mechanisms of supplementing lactose for enhancing weanling pig growth and nitrogen utilization are unclear. Thus, this study was prompted to determine effects of dietary supplementation of 3 prebiotics and oat β-glucan vs. a sub-therapeutic antibiotic on growth performance, whole-body protein utilization status, the apparent total tract dry matter (DM) and lactose digestibility in weanling pigs fed corn and soybean meal (SBM)-based diets. Six experimental diets were formulated with corn (40%), SBM (28%) and supplemented with dried whey powder (20%) and fish meal (9%) with titanium oxide (0.30%) as the digestibility marker. Diet 1 (NC, negative control), as the basal diet, contained no antibiotics and no supplemental prebiotics or β-glucan. Diet 2 (PC, positive control), contained an antibiotic premix (Lincomix-44 at 0.10%) in the basal diet at the expense of cornstarch. Diets 3, 5 and 6 contained 0.75% of the three test prebiotics of retrograded cornstarch (Diet 3), Fibersol-2 (Diet 5, a modified digestion-resistant maltodextrin) and inulin (Diet 6), and the viscous soluble fiber oat β-glucan (Diet 4), respectively, at the expense of cornstarch. A total of 144 Yorkshire pigs, at the age of 21 days (d) and an average body weight (BW) of 5.5 kg, were allocated to 12 floor pens with 3 barrows and 3 gilts per pen, and fed one of the 6 diets for 21 d in 2 study blocks according to a completely randomized block design. Initial and final pig BW, average daily gain (ADG), average daily feed intake (ADFI), representative pig plasma urea concentration as well as the apparent total tract DM and lactose digestibility during d 8-15 were measured. Analyses of variances, Dunnett’s and Tukey’s tests were conducted on the endpoints by using the SAS mixed model. There were no differences (P > 0.05) in ADG, ADFI, feed to gain ratio, plasma urea concentration, the apparent total tract apparent DM and lactose digestibility and the predicted whole-gut lactase digestive capacity among the diets, as examined by the Tukey’s test. There were no differences (P > 0.05) in these endpoints between each of the four treatment diets and the NC or the PC diet as examined by the Dunnett’s test. The total tract lactose digestibility was determined to be at 100%. The predicted whole-gut lactase digestive capacity was about eight times of the daily lactose intake when dietary lactose contents were supplemented at 10 - 12% (as-fed basis). In conclusion, dietary supplementation (at 0.75%) of the prebiotics and the oat β-glucan did not significantly affect the major growth performance endpoints, whole-body protein utilization status as well as the apparent total tract DM and lactose digestibility in the weanling pigs fed the corn and SBM-based diets. The promoting effect for growth and nitrogen utilization associated with dietary supplementation of lactose is due to the fact that lactose is a completely and rapidly digestible sugar rather than acting as an effective prebiotic in weanling pig nutrition

    Guar gum and similar soluble fibers in the regulation of cholesterol metabolism: Current understandings and future research priorities

    Get PDF
    The hypocholesterolemic effects associated with soluble fiber consumption are clear from animal model and human clinical investigations. Moreover, the modulation of whole-body cholesterol metabolism in response to dietary fiber consumption, including intestinal cholesterol absorption and fecal sterol and bile acid loss, has been the subject of many published reports. However, our understanding of how dietary fibers regulate molecular events at the gene/protein level and alter cellular cholesterol metabolism is limited. The modern emphasis on molecular nutrition and rapid progress in ‘high-dimensional’ biological techniques will permit further explorations of the role of genetic polymorphisms in determining the variable interindividual responses to soluble fibers. Furthermore, with traditional molecular biology tools and the application of ‘omic’ technology, specific insight into how fibers modulate the expression of genes and proteins that regulate intestinal cholesterol absorption and alter hepatic sterol balance will be gained. Detailed knowledge of the molecular mechanisms by which soluble fibers reduce plasma cholesterol concentrations is paramount to developing novel fiber-based “cocktails” that target specific metabolic pathways to gain maximal cholesterol reductions

    Polarization evolution accompanying the very early sharp decline of GRB X-ray afterglows

    Full text link
    In the synchrotron radiation model, the polarization property depends on both the configuration of the magnetic field and the geometry of the visible emitting region. Some peculiar behaviors in the X-ray afterglows of {\it Swift} gamma-ray bursts (GRBs), such as energetic flares and the plateau followed by a sharp drop, might by highly linearly-polarized because the outflows powering these behaviors may be Poynting-flux dominated. Furthermore, the broken-down of the symmetry of the visible emitting region may be hiding in current X-ray data and will give rise to interesting polarization signatures. In this work we focus on the polarization accompanying the very early sharp decline of GRB X-ray afterglows. We show that strong polarization evolution is possible in both the high latitude emission model and the dying central engine model which are used to interpret this sharp X-ray decline. It is thus not easy to efficiently probe the physical origin of the very early X-ray sharp decline with future polarimetry. Strong polarization evolution is also possible in the decline phase of X-ray flares and in the shallow decline phase of X-ray light curves characterized by chromatic X-ray VS. Optical breaks. An {\it XRT}-like detector but with polarization capability on board a {\em Swift}-like satellite would be suitable to test our predictions.Comment: 9 pages including 4 figures. Accepted for publication in MNRAS, typos correcte

    GeV antiproton/gamma-ray excesses and the WW-boson mass anomaly: three faces of 6070\sim 60-70 GeV dark matter particle?

    Full text link
    For the newly discovered WW-boson mass anomaly, one of the simplest dark matter (DM) models that can account for the anomaly without violating other astrophysical/experimental constraints is the inert two Higgs doublet model, in which the DM mass (mSm_{S}) is found to be within 5474\sim 54-74 GeV. In this model, the annihilation of DM via SSbbˉSS\to b\bar{b} and SSWWSS\to WW^{*} would produce antiprotons and gamma rays, and may account for the excesses identified previously in both particles. Motivated by this, we re-analyze the AMS-02 antiproton and Fermi-LAT Galactic center gamma-ray data. For the antiproton analysis, the novel treatment is the inclusion of the charge-sign-dependent three-dimensional solar modulation model as constrained by the time-dependent proton data. We find that the excess of antiprotons is more distinct than previous results based on the force-field solar modulation model. The interpretation of this excess as the annihilation of SSWWSS\to WW^{*} (SSbbˉSS\to b\bar{b}) requires a DM mass of 4080\sim 40-80 (406040-60) GeV and a velocity-averaged cross section of O(1026) cm3 s1O(10^{-26})~{\rm cm^3~s^{-1}}. As for the γ\gamma-ray data analysis, rather than adopting the widely-used spatial template fitting, we employ an orthogonal approach with a data-driven spectral template analysis. The fitting to the GeV γ\gamma-ray excess yields DM model parameters overlapped with those to fit the antiproton excess via the WWWW^{*} channel. The consistency of the DM particle properties required to account for the WW-boson mass anomaly, the GeV antiproton excess, and the GeV γ\gamma-ray excess suggest a common origin of them.Comment: 8 page

    The X-ray emission lines in GRB afterglows: the evidence for the two-component jet model

    Full text link
    Recently, X-ray emission lines have been observed in X-ray afterglows of several γ\gamma-ray bursts. It is a major breakthrough for understanding the nature of the progenitors. It is proposed that the X-ray emission lines can be well explained by the Geometry-Dominated models, but in these models the illuminating angle is much larger than that of the collimated jet of the γ\gamma-ray bursts(GRBs). For GRB 011211, we obtain the illuminating angle is about θ45\theta\sim45^{\circ}, while the angle of GRB jet is only 3.63.6^{\circ}, so we propose that the outflow of the GRBs with emission lines should have two distinct components. The wide component illuminates the reprocessing material, and produces the emission lines, while the narrow one produces the γ\gamma-ray bursts. The observations show that the energy for producing the emission lines is higher than that of the GRBs. In this case, when the wide component dominates the afterglows, a bump will appear in the GRBs afterglows. For GRB 011211, the emergence time of the bump is less than 0.05 days after the GRB, it is obviously too early for the observation to catch it. With the presence of the X-ray emission lines there should also be a bright emission component between the UV and the soft X-rays. These features can be tested by the SwiftSwift satellite in the near future.Comment: 10 pags, 1 figure, ChJAA in pres

    High Energy Afterglow from Gamma-ray Bursts

    Full text link
    We calculate the very high energy (sub-GeV to TeV) inverse Compton emission of GRB afterglows. We argue that this emission provides a powerful test of the currently accepted afterglow model. We focus on two processes: synchrotron self-Compton (SSC) emission within the afterglow blast wave, and external inverse Compton (EIC) emission which occurs when flare photons (produced by an internal process) pass through the blast wave. We show that if our current interpretations of the Swift XRT data are correct, there should be a canonical high energy afterglow emission light curve. Our predictions can be tested with high energy observatories such as GLAST, Whipple, H.E.S.S. and MAGIC. Under favorable conditions we expect afterglow detections in all these detectors.Comment: 15 pages, 15 eps figures and 1 table, slightly modified version to appear in MNRAS. Fig.12 is added to illustrate the difference of the EIC emission lightcurves with and without the anisotropic correction in the comoving frame of the blast wav

    Measurement report: Atmospheric nitrate radical chemistry in the South China Sea influenced by the urban outflow of the Pearl River Delta

    Get PDF
    The nitrate radical (NO3) is a critical nocturnal atmospheric oxidant in the troposphere, which widely affects the fate of air pollutants and regulates air quality. Many previous works have reported the chemistry of NO3 in inland regions of China, while fewer studies target marine regions. Here, we present a field measurement of the NO3 reservoir, dinitrogen pentoxide (N2O5), and related species at a typical marine site (Da Wan Shan Island) located in the South China Sea in the winter of 2021. Two patterns of air masses were captured during the campaign, including the dominant airmass from inland China (IAM) with a percentage of ∼ 84 %, and the airmass from eastern coastal areas (CAM) with ∼ 16 %. During the IAM period, the NO3 production rate reached 1.6 ± 0.9 ppbv h−1 due to the transportation of the polluted urban plume with high NOx and O3. The average nocturnal N2O5 and the calculated NO3 mixing ratios were 119.5 ± 128.6 and 9.9 ± 12.5 pptv, respectively, and the steady-state lifetime of NO3 was 0.5 ± 0.7 min on average, indicating intensive nighttime chemistry and rapid NO3 loss at this site. By examining the reaction of NO3 with volatile organic compounds (VOCs) and N2O5 heterogeneous hydrolysis, we revealed that these two reaction pathways were not responsible for the NO3 loss (&lt; 20 %) since the NO3 reactivity (k(NO3)) towards VOCs was small (5.2×10-3 s−1) and the aerosol loading was low. Instead, NO was proposed to significantly contribute to nocturnal NO3 loss at this site, despite the nocturnal NO concentration always below the parts per billion by volume level and near the instrument detection limit. This might be from the local soil emission or something else. We infer that the nocturnal chemical NO3 reactions would be largely enhanced once without NO emission in the open ocean after the air mass passes through this site, thus highlighting the strong influences of the urban outflow to the downwind marine areas in terms of nighttime chemistry. During the CAM period, nocturnal ozone was higher, while NOx was much lower. The NO3 production was still very fast, with a rate of 1.2 ppbv h−1. With the absence of N2O5 measurement in this period, the NO3 reactivity towards VOCs and N2O5 uptake were calculated to assess NO3 loss processes. We showed that the average k(NO3) from VOCs (56.5 %, 2.6 ± 0.9 × 10−3 s−1) was higher than that from N2O5 uptake (43.5 %, 2.0 ± 1.5 × 10−3 s−1) during the CAM period, indicating a longer NO3 / N2O5 lifetime than that during IAM period. This study improves the understanding of the nocturnal NO3 budget and environmental impacts with the interaction of anthropogenic and natural activities in marine regions.</p

    Kernel based methods for accelerated failure time model with ultra-high dimensional data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Most genomic data have ultra-high dimensions with more than 10,000 genes (probes). Regularization methods with <it>L</it><sub>1 </sub>and <it>L<sub>p </sub></it>penalty have been extensively studied in survival analysis with high-dimensional genomic data. However, when the sample size <it>n </it>≪ <it>m </it>(the number of genes), directly identifying a small subset of genes from ultra-high (<it>m </it>> 10, 000) dimensional data is time-consuming and not computationally efficient. In current microarray analysis, what people really do is select a couple of thousands (or hundreds) of genes using univariate analysis or statistical tests, and then apply the LASSO-type penalty to further reduce the number of disease associated genes. This two-step procedure may introduce bias and inaccuracy and lead us to miss biologically important genes.</p> <p>Results</p> <p>The accelerated failure time (AFT) model is a linear regression model and a useful alternative to the Cox model for survival analysis. In this paper, we propose a nonlinear kernel based AFT model and an efficient variable selection method with adaptive kernel ridge regression. Our proposed variable selection method is based on the kernel matrix and dual problem with a much smaller <it>n </it>× <it>n </it>matrix. It is very efficient when the number of unknown variables (genes) is much larger than the number of samples. Moreover, the primal variables are explicitly updated and the sparsity in the solution is exploited.</p> <p>Conclusions</p> <p>Our proposed methods can simultaneously identify survival associated prognostic factors and predict survival outcomes with ultra-high dimensional genomic data. We have demonstrated the performance of our methods with both simulation and real data. The proposed method performs superbly with limited computational studies.</p

    Urban energy consumption and CO2 emissions in Beijing: current and future

    Get PDF
    This paper calculates the energy consumption and CO2 emissions of Beijing over 2005–2011 in light of the Beijing’s energy balance table and the carbon emission coefficients of IPCC. Furthermore, based on a series of energy conservation planning program issued in Beijing, the Long-range Energy Alternatives Planning System (LEAP)-BJ model is developed to study the energy consumption and CO2 emissions of Beijing’s six end-use sectors and the energy conversion sector over 2012–2030 under the BAU scenario and POL scenario. Some results are found in this research: (1) During 2005–2011, the energy consumption kept increasing, while the total CO2 emissions fluctuated obviously in 2008 and 2011. The energy structure and the industrial structure have been optimized to a certain extent. (2) If the policies are completely implemented, the POL scenario is projected to save 21.36 and 35.37 % of the total energy consumption and CO2 emissions than the BAU scenario during 2012 and 2030. (3) The POL scenario presents a more optimized energy structure compared with the BAU scenario, with the decrease of coal consumption and the increase of natural gas consumption. (4) The commerce and service sector and the energy conversion sector will become the largest contributor to energy consumption and CO2 emissions, respectively. The transport sector and the industrial sector are the two most potential sectors in energy savings and carbon reduction. In terms of subscenarios, the energy conservation in transport (TEC) is the most effective one. (5) The macroparameters, such as the GDP growth rate and the industrial structure, have great influence on the urban energy consumption and carbon emissions

    Polymorphism rs4919510:C>G in Mature Sequence of Human MicroRNA-608 Contributes to the Risk of HER2-Positive Breast Cancer but Not Other Subtypes

    Get PDF
    BACKGROUND: A few polymorphisms are located in the mature microRNA sequences. Such polymorphisms could directly affect the binding of microRNA to hundreds of target mRNAs. It remains unknown whether rs4919510:C>G located in the mature miR-608 alters breast cancer susceptibility. METHODS: The association of rs4919510:C>G with risk and pathologic features of breast cancer were investigated in two independent case-control studies, the first set including 1,138 sporadic breast cancer patients (including 927 invasive ductal carcinoma patients, 777 of them with known subtypes: 496 luminal-like, 133 HER2-positive, and 148 triple-negative) and 1,434 community-based controls, and the second set including 294 familial/early-onset breast cancer patients and 500 hospital-based cancer-free controls. Odds ratios (ORs) were estimated by logistic regression. Predicted targets of miR-608 and complementary sequences containing rs4919510:C>G were surveyed to reveal potential pathological mechanism. RESULTS: In the first set, although rs4919510:C>G was unrelated to breast cancer in general patients, variant genotypes (CG/GG) were specifically associated with increased risk of HER2-positive subtype (Adjusted OR = 1.97, 95% CI, 1.34-2.90 in the recessive model). Variant G-allele was the risk allele with OR of 1.62 (95% CI, 1.23-2.15). Patients carrying GG-genotype also had larger HER2-positive tumors (P for Kruskal-Wallis test = 0.006). The relationship between rs4919510:C>G and risk of HER2-positive subgroup was validated in the second set (Bonferroni corrected P = 0.06). The adjusted combined OR (total 164 HER2-positive cases) in the recessive model was 1.97 (95% CI, 1.43-2.72) for GG genotype (corrected P = 1.1 × 10(-4)). Bioinformatic analysis indicated that, HSF1, which is required for HER2-induced tumorigenesis, might be a target of miR-608. The minimum free-energy of ancestral-miR-608 (C-allele) binding to HSF1 is -35.9 kcal/mol, while that of variant-form (G-allele) is -31.5 kcal/mol, indicating a lower affinity of variant-miR-608 to HSF1 mRNA. CONCLUSION: rs4919510:C>G in mature miR-608 may influence HER2-positive breast cancer risk and tumor proliferation
    corecore